The alternating harmonic series

  Рет қаралды 3,255

Chris Odden

Chris Odden

Күн бұрын

Пікірлер: 14
@naribaek5289
@naribaek5289 4 жыл бұрын
I love this presentation of the material. Can I ask what software you are using? It looks like PowerPoint, but I'm not sure.
@chrisodden
@chrisodden 4 жыл бұрын
Hi, Nari. I use Keynote on a mac. For mathematical expressions I use LaTeXit, one of the apps that comes bundled in the MacTeX package.
@naribaek5289
@naribaek5289 4 жыл бұрын
@@chrisodden Thank you so much for the info! :)
@prognosticii
@prognosticii 2 жыл бұрын
At 7:40, your steps to prove both subsequences converge to the same limiting value are a little confusing: where did 1/(2n+1) come from? I can prove the expression is true with test values of n, but is there a more formal derivation?
@chrisodden
@chrisodden 2 жыл бұрын
Hi Trey. (I will use s for "sigma".) The partial sum s_N is simply partial sum a_1 + a_2 + ... + a_N. Whenever we subtract one partial sum from the previous partial sum we simply obtain the single term that was added to get from the one sum to the next. That is, s_{N+1} - s_N = (a_1 + ... + a_N + a_{N+1} ) - (a_1 + ... + a_N ) = a_{N+1}. In the video the application of this principle is: s_{2N+1} - s_{2N} = a_{2N+1} = 1/(2N+1).
@chrisodden
@chrisodden 2 жыл бұрын
I might add that for the alternating harmonic series a_k = (-1)^(k+1) / k, so using k = 2N+1 means that a_{2N+1} = 1/(2N+1).
@prognosticii
@prognosticii 2 жыл бұрын
@Chris Odden I see. It was just odd for me, as when I derived the proof that the even terms increase that constant added was different from the one for the odd claim, and hence my initial reservation to your deduction.
@anaboumard9482
@anaboumard9482 4 жыл бұрын
You deserve way more subscribers !! I can't find the exact proof of why this series converges to ln2 tho...
@chrisodden
@chrisodden 4 жыл бұрын
Thanks! As for the value of the series, the usual proof is to show that the values of the function ln(1+x) are given by the power series x - x^2/2 + x^3/3 - x^4/4 + ... (known as the Taylor series for ln(1_x)) for each x in the open interval (-1,1), then to appeal to Abel's Theorem, allowing x to approach 1 from the left to obtain ln 2 = 1 - 1/2 + 1/3 - 1/4 + ...
@cmPe6an
@cmPe6an 3 жыл бұрын
@@chrisodden I have seen the proof done using ln(1-x) and then letting x approach -1. I have not seen Abel's Theorem cited in those proofs. Is it being used but swept under the rug? Maybe when you are sure that the series is going to converge at the endpoint, you can just plug it in and say "look it's the alternating harmonic series so it converges" instead of citing Abel's Theorem first. Thanks for the video!
@prognosticii
@prognosticii 2 жыл бұрын
@@cmPe6an I watched a video from BriTheMathGuy on the proof of the convergence, though it is not the most intuitive; but, it is the proof irregardless. The proof evaded use of taylor series, &c.
@comic4relief
@comic4relief 4 жыл бұрын
I graphed it with a piece of paper and a pencil.
@chrisodden
@chrisodden 4 жыл бұрын
Yes! I should have mentioned that - two of my favorite technologies, pencil and paper.
@comic4relief
@comic4relief 4 жыл бұрын
@@chrisodden ...and eraser!
The alternating series test (also known as the Leibniz Test)
20:54
Chris Odden
Рет қаралды 1,6 М.
The bizarre world of INFINITE rearrangements  // Riemann Series Theorem
17:38
ТВОИ РОДИТЕЛИ И ЧЕЛОВЕК ПАУК 😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 7 МЛН
Lamborghini vs Smoke 😱
00:38
Topper Guild
Рет қаралды 48 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 25 МЛН
What is the i really doing in Schrödinger's equation?
25:06
Welch Labs
Рет қаралды 231 М.
A nice approach to the alternating harmonic series
9:30
Michael Penn
Рет қаралды 25 М.
I never understood why you can't go faster than light - until now!
16:40
FloatHeadPhysics
Рет қаралды 4,1 МЛН
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
Visualizing quaternions (4d numbers) with stereographic projection
31:51
I never understood why electrons have spin... until now!
15:59
FloatHeadPhysics
Рет қаралды 726 М.
The Concept So Much of Modern Math is Built On | Compactness
20:47
Morphocular
Рет қаралды 441 М.
ТВОИ РОДИТЕЛИ И ЧЕЛОВЕК ПАУК 😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 7 МЛН