The Basel Problem: A double integral solution

  Рет қаралды 24,241

Joe Breen Math

Joe Breen Math

Күн бұрын

Пікірлер: 54
@speeshers
@speeshers 4 жыл бұрын
My mind is blown, this is incredibly elegant
@HaliPuppeh
@HaliPuppeh Жыл бұрын
What the holy actual F??? You made this insanely easy to understand and this trick is awesome.
@hymanimy
@hymanimy 2 жыл бұрын
This is such a sick way to solve the Basel Problem. I'm always looking for new ways to solve it other than the way Euler did it with the function sin(x)/x. I've got a video on my channel solving the problem by exploiting complex numbers but this solution is so much more elegant. Plus I love the calm way you lead us through the proof - it makes all the steps feel incredibly natural yet clever. Awesome video!
@strikerstone
@strikerstone 10 ай бұрын
i have never seen such good solution with so nice quality for basel problem , thank you and keep making math videos
@hosz5499
@hosz5499 5 ай бұрын
GOAT change of variable is amazing! Its logic would be simpler if defining (x=sinu/sinv, y=cosv/cosu) in a triangle 0
@mohitsinha2732
@mohitsinha2732 Жыл бұрын
Absolutely Brilliant! The substitution is simply Mind-blowing!
@rkmoitra123
@rkmoitra123 Жыл бұрын
Marvellous solution... just the best solution to the Basel problem..
@helmutriedel2647
@helmutriedel2647 2 жыл бұрын
Dear Joe Breen, wow, what a brilliant solution of the Basel problem. Did you ever think about generalizing this technique to larger n? While there is a formula for even n, there are no closed expressions for odd n to my knowledge. If I rewrite the so-called Apery constant zeta(3) using your technique, I get the triple integral zeta(3) = 8/7 int_0^1 int_0^1 int_0^1 f(x,y,z) dx dy dz with f(x,y,z) = 1/(1-x^2 y^2 z^2) Now, a variable substitution is needed, such that the determinant of the Jacobian is just 1/f(x,y,z) leading to the integrad of 1. Then, zeta(3) would just be the volume defined by the transformed boundaries. In analogy to your solution for n=2, I tried x = sin u / cos v, y = sin v / cos w, z = sin w / cos u. The transformed integrand is g(u,v,w) = 1 / (1 - tan^2 u tan^2 v tan^2 w), but the determinant of the Jacobian is det(J) = 1 + tan^2 u tan^2 v tan^2 w. I could not resolve the issue with the different signs so far. What do you think about this approach?
@b.afreeshooters146
@b.afreeshooters146 7 ай бұрын
try inverting the sign one of the variable substitutions, just a desperate guess.
@jozsefgurzo8777
@jozsefgurzo8777 2 жыл бұрын
This change of variables is just soo sick, blew my mind. However there's something I'm not entirely sure about. When you solved the inequalities, you didn't cover the case when the cosines are negative and thus the sinses are negative as well. I guess it would lead to a contradiction, cause the result is correct, but it's such a bittersweet feeling. After all of these incredible ideas, it just doesn't feel right to neglect this case. Thanks for the effort tho! I really enjoyed the video!
@NateROCKS112
@NateROCKS112 Жыл бұрын
Since we don't want any duplicates when performing our map, we need to define a suitable inverse function. The standard codomain of arcsin is [-pi/2, pi/2], and it's [0, pi] for arccos. You could restrict them differently, but they need to actually function as left and right inverses. While I don't believe it'd lead to a contradiction if you defined arcsin and arccos differently, you'd have to carefully the relationships between u and v when computing the area. It's a lot easier to just use the principal branch.
@Someone-cr8cj
@Someone-cr8cj 4 жыл бұрын
you are criminally undersubscribed to. this is amazing.
@gavintillman1884
@gavintillman1884 2 жыл бұрын
Amazing. To think discoveries like this being made after I did my maths degree.
@izaret
@izaret 2 жыл бұрын
Unity between substance and form which underlies great art is remarkable. The elegance of the solution is mirrored by the style of the video, calmly going through the proof with chill musical background. The explanation both takes the time to decompose the steps yet does not over-explain. Well-pitched. Like Grant of 3b1b, Mathologer or Math Parker, you have a unique style which is likely to help people discover math ideas under a new light even if the subject has been treated somewhere else. Keep going, you have something.
@ivywoodxrecords
@ivywoodxrecords 3 жыл бұрын
The 4/3 here is indicative of a basis of 3D volumes. Consider the generation of sequential growth resulting in volumetric definition of geometries in 3D yet defined in the 2D reals. Holographic representation of an additional dimension, via the definition of circular geometries within the summation of zeta(2)
@dragonheart2696
@dragonheart2696 4 жыл бұрын
Thank you for your well-done job
@emmanuelldx7788
@emmanuelldx7788 2 жыл бұрын
Excellent video, very well explained.
@ilafya
@ilafya 2 жыл бұрын
You are the man Man
@ClementCollin-so9hc
@ClementCollin-so9hc 8 күн бұрын
great video !! thank you :)
@markferrufino5038
@markferrufino5038 4 жыл бұрын
We love a cool math video 🤝
@joebreenmath7442
@joebreenmath7442 4 жыл бұрын
Gotta provide for the world in quarantine
@nasim09021975
@nasim09021975 Жыл бұрын
Very nice video 🤟😄 Very clear explanation 😊
@ayushdeep7900
@ayushdeep7900 3 жыл бұрын
You will do great man, keep doing this
@hosz5499
@hosz5499 5 ай бұрын
how do you generalise to evaluate zeta(4) with integrate_0^1 1/(1-xyzw) dx dy dz dw --> Pi^4/90?
@nishchayy
@nishchayy 3 жыл бұрын
So cool. Thank you for sharing this. Amazing
@revanthk61
@revanthk61 Жыл бұрын
Impressive bro
@jasonlin5884
@jasonlin5884 5 ай бұрын
But the mapping of domain to codomain ( or vice versa) seems very strange and hard to understand.(for example What would be the value of (u,v) when x=0,y=0). It is not one to one mapping. Thus the equality of integration (with Jacobian factor ) can still hold true?
@kailasnathastro
@kailasnathastro Жыл бұрын
Amazing
@redroach401
@redroach401 6 ай бұрын
can someone explain the triangle thing to me please and what would the new bounds be?
@jlsown
@jlsown 4 жыл бұрын
This is some cool stuff
@didierchaumet
@didierchaumet 3 жыл бұрын
Brilliant!
@costelnica3988
@costelnica3988 Жыл бұрын
Wow! Super!
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
Thats you
@ms070965
@ms070965 Жыл бұрын
Vert nice
@ongvalcot6873
@ongvalcot6873 3 жыл бұрын
Yes, very nice. But too clever. Could the integral be solved with simpler less clever method?
@Impossiblegend
@Impossiblegend 2 жыл бұрын
Of course! There are countless methods to solve double integrals, and some are much more elementary, albeit slower.
@noelani976
@noelani976 2 жыл бұрын
Apostol's solution to the Basel problem??!! Chuks from Nigeria.
@autisticanimator
@autisticanimator Жыл бұрын
I tried the double integral with partial fraction and it is a nonelementary integral.
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
X=2531
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
=022.0.50
@arielfuxman8868
@arielfuxman8868 3 жыл бұрын
Cool
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
-4
@danielc.martin
@danielc.martin Жыл бұрын
😮
@dmitryramonov8902
@dmitryramonov8902 3 жыл бұрын
log(2cos(x))dx much better)
@arielfuxman8868
@arielfuxman8868 3 жыл бұрын
This is more elementary. No complex analysis.
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
=
@DanielHendriks77
@DanielHendriks77 2 жыл бұрын
But how large is pi?
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
Musiclove|
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
-1000000000000000000000db
@zackeriaeslynesjbrautccie4283
@zackeriaeslynesjbrautccie4283 2 жыл бұрын
=\ the three you give us negative one on top on you is far
@mbmast1
@mbmast1 11 ай бұрын
Man, loose the background music!
@martinschulte3613
@martinschulte3613 2 жыл бұрын
Very nice - except for this horrible background music…
ТВОИ РОДИТЕЛИ И ЧЕЛОВЕК ПАУК 😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 5 МЛН
Увеличили моцареллу для @Lorenzo.bagnati
00:48
Кушать Хочу
Рет қаралды 8 МЛН
This Game Is Wild...
00:19
MrBeast
Рет қаралды 143 МЛН
When u fight over the armrest
00:41
Adam W
Рет қаралды 30 МЛН
作詞、俺。
3:35
蛾々
Рет қаралды 156
Apostol's Solution to the Basel Problem
13:37
Michael Penn
Рет қаралды 35 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 710 М.
An interesting approach to the Basel problem!
19:26
Michael Penn
Рет қаралды 139 М.
1 ^ ∞, It's Not What You Think
4:28
BriTheMathGuy
Рет қаралды 1 МЛН
ТВОИ РОДИТЕЛИ И ЧЕЛОВЕК ПАУК 😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 5 МЛН