The consequences of Gödel's theorems - Ep. 7.1: Formalism, Logicism and Intuitionism

  Рет қаралды 3,890

UFBA Philosophy Lectures

UFBA Philosophy Lectures

Күн бұрын

Пікірлер: 20
@pygmalionsrobot1896
@pygmalionsrobot1896 Жыл бұрын
This was brilliant, thank you so much for making this available.
@MathCuriousity
@MathCuriousity Жыл бұрын
Could you please explain your comment? Also would you help me please understand the difference between constructivism and intuitionism? Thanks so much!
@MathCuriousity
@MathCuriousity Жыл бұрын
What is the relationship between intuitionism and constructivism? Thanks!
@andersonm.5157
@andersonm.5157 Жыл бұрын
Intuitionism is a branch of constructivism.
@MathCuriousity
@MathCuriousity Жыл бұрын
@@andersonm.5157may I ask you another question: I just began studying set theory and first order logic. 1) I noticed first order logic is used to define the axioms for set theory and sets are used to describe the semantics of first order logic. Isn’t this circular? I now feel very anxious that mathematics is not safe. 2) When we talk about first order logic using sets, is this part of the metalanguage or meta theory? Thanks!
@andersonm.5157
@andersonm.5157 Жыл бұрын
@@MathCuriousity As i'm not a mathematician, idk how deep my knowledge is, but: 1. I think that we need the concept of sets before first order logic, but i don't think it's a circular reasoning because the axioms of the ZF model do not define what a set is. Instead, they restrict what types of sets are allowed (like the axiom of foundation), what relationships (like extensionality) and operations to construct sets (schema of specification, pairing, ...) are defined, as well as defining the existence of certain types of sets (axiom of infinity, power set). In short, they define the structure of the theory. 2. Yes.
@andersonm.5157
@andersonm.5157 Жыл бұрын
@@MathCuriousity And in fact, a primitive concept of sets would be of the classes. Sets are classes with some restrictions.
@MathCuriousity
@MathCuriousity Жыл бұрын
@@andersonm.5157 ok I see!
@hadeeskhokhar8805
@hadeeskhokhar8805 3 жыл бұрын
This is some sick stuff
@amrelnashar517
@amrelnashar517 3 жыл бұрын
Indeed!
@markuspfeifer8473
@markuspfeifer8473 2 жыл бұрын
Gödel’s results *are* intuitionist
The Foundations of Mathematics - Logicism : A Brief Introduction
21:33
The Second Number-Class
Рет қаралды 4,6 М.
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
When you have a very capricious child 😂😘👍
00:16
Like Asiya
Рет қаралды 18 МЛН
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Paradox is the Ultimate Truth
24:18
Benjamin Davies
Рет қаралды 3,3 М.
Why is Mathematics True and Beautiful? | Episode 2201 | Closer To Truth
26:52
Intuitionist mathematics
19:23
Thing in itself (clips)
Рет қаралды 2,2 М.
Being and Nothing - Conversations with Graham Priest
1:13:47
UFBA Philosophy Lectures
Рет қаралды 3,7 М.
Intro to the Philosophy of Mathematics (Ray Monk)
35:08
Philosophy Overdose
Рет қаралды 94 М.
Ep. 84 - When Logic Met Math | Dr. Graham Priest
28:09
Steve Patterson
Рет қаралды 3,8 М.
The Foundation of Mathematics - Numberphile
15:11
Numberphile2
Рет қаралды 113 М.
Genius Edward Teller Describes 1950s Genius John Von Neumann
3:56
David Hoffman
Рет қаралды 299 М.
Philosophy of Mathematics: Platonism
1:13:21
Kane B
Рет қаралды 69 М.
Gödel's Incompleteness Theorem - Numberphile
13:52
Numberphile
Рет қаралды 2,2 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН