The Finite Square Well: *Two* Methods Every Physicist Should Know

  Рет қаралды 12,699

Mr. P Solver

Mr. P Solver

Күн бұрын

Пікірлер: 34
@lajuelar
@lajuelar 2 жыл бұрын
Thank you Mr. P. Solver. Your lectures are my main guides in studying python programming.
@oneman7039
@oneman7039 2 жыл бұрын
hey dude love the videos, fr they are dynoomite, keep doing ur thing. Think youll ever do some QM many body stuff further down the line, HF, CI, DFT etc...? anyway hope this channel blows up!!
@MrPSolver
@MrPSolver 2 жыл бұрын
Perhaps! I'd need to read more about them first, since I can't say I'm super familiar!
@oneman7039
@oneman7039 2 жыл бұрын
@@MrPSolver me neither haha but, I'm learning now!!. QM many body (and non qm also) stuff is well suited for numerical approaches too since I don't think there is any analytical ways of doing it. Check out "an introduction to hartree fock...." By c David sherill (online paper) for a very quick intro to hf (the og method), and I think molecular structure theory by trygve helgaker is the big boy book for in detail workings (although I haven't read any of it myself).
@jupiter7180
@jupiter7180 2 жыл бұрын
So good. I literally have this problem due in a homework today. I like the ways you solved it!
@rio_agustian_
@rio_agustian_ 2 жыл бұрын
Cool! I'm a physics undergrad, your videos helped me a lot 👌👌
@Mayank-mf7xr
@Mayank-mf7xr 2 жыл бұрын
One of the finest videos on this topic.
@jdreynolds9959
@jdreynolds9959 2 жыл бұрын
I think you can rewrite the tan (cot) functions in terms of sine and cosine functions thus avoiding those horrible singularities. For example, p * tan(p) - q = 0 same as q * cos(p) - p * sin(p) = 0, and similar for cot.
@griffgruff1
@griffgruff1 Жыл бұрын
Good video, but I find red letters difficult to read with dark backgrounds.
@DrAtomics
@DrAtomics 2 жыл бұрын
Good stuff! Love your content man, I like to follow along and do them with you.
@nsumanth18
@nsumanth18 2 жыл бұрын
A video on symplectic integrators use to solve quantum system would be awesome
@JeanDAVID
@JeanDAVID 2 жыл бұрын
you make me feel that solving schrodinger equation is at everybody's arm reach !!!
@namangautam2277
@namangautam2277 2 жыл бұрын
can you solve this problem by using the numerov method
@idiosinkrazijske.rutine
@idiosinkrazijske.rutine 2 жыл бұрын
Good tutorial, thumbs up. BTW red on black is not so visible. Maybe chose something with higher contrast.
@MrPSolver
@MrPSolver 2 жыл бұрын
Quite true; I didn't notice until I was editing!
@fisicacomprof.marcelo9510
@fisicacomprof.marcelo9510 2 жыл бұрын
Very good man! Thank you for sharing your experience.
@DanielLima-kp9lo
@DanielLima-kp9lo Жыл бұрын
What is the form of the tridiagonal matrix if there is a first-order derivative in the second-order differential equation? I believe that if one uses the finite difference definition of the first-order derivative and sums it up with the second-order derivative definition, the off-diagonals won't be equal. Great work!
@gmcenroe
@gmcenroe Жыл бұрын
How about animating a traveling wave funcation reflected from a barrier wall, showing the tunneling of the wave function. That would be cool.
@justin.p.oommen
@justin.p.oommen 2 жыл бұрын
Hey Man I love all of your content and it helped me so much. I am waiting for a content where you could do some High Energy physics exercises. ❤️
@mariomuysensual
@mariomuysensual 2 жыл бұрын
Damn, finite differences ftw!!
@lucaslongo473
@lucaslongo473 2 жыл бұрын
Hi, this help me to solve finite well, i was wondering how i can implement this method to solve the potential barrier. How can i do that? Im wondering if the conditions psi_0=0 and psi_N=0 are still valids...Thanks in advance!!
@ghaiath-altrabulsi
@ghaiath-altrabulsi 2 жыл бұрын
Thanks for good content. Could you please make a video for Maxwell's equations? 🙂
@kdub1242
@kdub1242 2 жыл бұрын
This _does_ apply to Maxwell's equations - the case of plane waves in an interferometer or resonator. It also applies to acoustic waves. "The same equations have the same solutions."
@GustavoPinho89
@GustavoPinho89 Жыл бұрын
This guy Vinod is always present in Schrodinger problems 😂🤣🤣
@officiallyaninja
@officiallyaninja 2 жыл бұрын
no Diss track today?
@MrPSolver
@MrPSolver 2 жыл бұрын
Gotta save the diss track for the sequence of square wells ;)
@mikekertser5384
@mikekertser5384 2 жыл бұрын
Fantastic. Thank you! :)
@commonwombat-h6r
@commonwombat-h6r 2 жыл бұрын
a great video, thank you!!
@Universe12343
@Universe12343 Жыл бұрын
very helpful
@maurocruz1824
@maurocruz1824 2 жыл бұрын
Thx
@h.e.a311
@h.e.a311 2 жыл бұрын
Perfect 👍
@saidteacher3331
@saidteacher3331 Жыл бұрын
I am falling behind, physics itself is challeng8ng let alone these codes, i am trying but keep failing .... I am 41. I bearly fonnished my Masters. .... i do not knwo what to do. I think i will return to work in my restaurant .
@martinzapata7289
@martinzapata7289 2 жыл бұрын
Great vid overall, but that method for finding the zeros of a function was the sketchiest shit I’ve ever seen 💀
@MrPSolver
@MrPSolver 2 жыл бұрын
Haha welcome to numerical computing
Linear Combination of Atomic Orbitals (LCAO) in Python
39:57
Mr. P Solver
Рет қаралды 7 М.
What is the i really doing in Schrödinger's equation?
25:06
Welch Labs
Рет қаралды 302 М.
Каха и дочка
00:28
К-Media
Рет қаралды 2,2 МЛН
Eigenstates of ANY 1D Potential in PYTHON
19:41
Mr. P Solver
Рет қаралды 37 М.
Finite square well. Setting up the problem
22:30
MIT OpenCourseWare
Рет қаралды 103 М.
Infinite square well energy eigenstates
13:13
MIT OpenCourseWare
Рет қаралды 102 М.
A Quantum Problem Every Physics Student Should Attempt
32:46
Mr. P Solver
Рет қаралды 19 М.
Bound states, scattering states, and tunneling
16:39
Brant Carlson
Рет қаралды 59 М.
More Practice with Lagrangian Mechanics in Python
23:50
Mr. P Solver
Рет қаралды 15 М.
Quantum Wells Explained
12:32
Jordan Louis Edmunds
Рет қаралды 59 М.
The Quantum Barrier Potential Part 1: Quantum Tunneling
21:35
Professor Dave Explains
Рет қаралды 146 М.
All Types of Fourier Transforms in PYTHON
30:44
Mr. P Solver
Рет қаралды 57 М.
Delta function potential I: Preliminaries
16:04
MIT OpenCourseWare
Рет қаралды 48 М.