This is remarkably well motivated. Something you don't get in crappy calculus classes or texts. The way he motivates the mean value theorem's role in the proof (what both parts of the proof hinge on) is lovely.
@PopDeek232 жыл бұрын
This proof is so clearly explained in this video it gave me goosebumps! Wonderful!
@slcmathpc2 жыл бұрын
Great!
@שחראוסי-פ1ב5 жыл бұрын
seen several explanations, this one us the best so far
@Rougesteelproject2 жыл бұрын
5:40 This is when I finally understood how the Fundamental Theorem works. Thank you so much!
@chessandmathguy5 жыл бұрын
This has got to be one of the most beautiful things I've seen in a while. Subscribed!
@josuerios1907 жыл бұрын
Thanks, I'm a student from Colombia, and I can understand the proof. You are great teacher, thank you, very much
@BatterflyHigh6 жыл бұрын
THIS MADE SO MUCH SENSE, THANK YOU SO MUCH
@mathbrainius3 жыл бұрын
Clear explanation. The speed of the presentation is perfect, too.
@charlessmith64125 жыл бұрын
I have only seen the approach of using an area function A(x) once before. And that was in Calculus for Dummies. This exposition is much clearer. Thank you very much for an excellent video.
@lindavadnais80934 жыл бұрын
Like poetry. This eloquently takes the listener back to the classroom of Newton and Leibniz, or at least what I would imagine it to be. Damn good!
@slcmathpc4 жыл бұрын
Very much appreciated, though I am not sure to be worthy of such high praise. :-)
@roydaboii9925 Жыл бұрын
This is so much better than sal khan's proof
@Aman_iitbh Жыл бұрын
goosebump literally ,how easily u explained
@ayoubdiri45537 жыл бұрын
i wish if we had such explanation ways in moroccan classes excellent video i'm waiting your works
@santiospina45045 жыл бұрын
Thankyou very much!! I have been searching for this proof so many times!!
@desrucca2 жыл бұрын
Thanks alot! This is the best and the simplest explanation i've ever seen
@slcmathpc2 жыл бұрын
:-)
@ObiajuluEmma-Ebere5 ай бұрын
Excellent!! From Nigeria, thank you.
@wagsman99994 жыл бұрын
Nice. I always thought the FTC was a bit circular, but now I SEE THE LIGHT. Thanks.
@slcmathpc4 жыл бұрын
Glad to hear! It is such a beautiful and powerful result!
@paulboro52783 жыл бұрын
King of simplicity.
@lalalajessica37525 жыл бұрын
Thank you so much! This is a really clear proof!
@danny896202 жыл бұрын
This is the greatest video on KZbin
@wesrobertson87533 жыл бұрын
Thank you! I get what my books have been trying to explain now. And about time to. This is going on a poster on my wall word for word!
@kidusabebe26453 жыл бұрын
This is What I call Feynman Technique. Thanks a lot.
@agumondigimon4 жыл бұрын
Thank you for the explanation!
@Santos-cz1mz Жыл бұрын
By the way, thanks for providing material that we can download on your web page!
@slcmathpc Жыл бұрын
I have just posted a new version of the integral calculus (Math NYB) course pack that contains some very nice additional stuff if you're curious. :-)
@Santos-cz1mz Жыл бұрын
@@slcmathpc That's great, thanks!!
@_DD_155 жыл бұрын
Beautifully done!
@caomoletimoloi65654 жыл бұрын
You are the best!!! You don't deserve this number of views and subscribers. You deserve so much more than that.
@gustavosedano2947 жыл бұрын
¡Amazing! Simple but logical
@caomoletimoloi65654 жыл бұрын
You are a life savior. I never really understood F.T.C but after watching this video i realised It was easy. Thank you so much
@slcmathpc4 жыл бұрын
I am glad to hear that one more person in the world appreciates and understands this beautiful result!
@smoothacceleration4375 жыл бұрын
Beautiful proof in beautiful handwriting.
@DenisBencic5 жыл бұрын
Holy shit this was awesome. Thank you!
@zakusa98916 жыл бұрын
clear video but tsill dont get it. the independent variables are so confusing gustavo
@ЕлизаветаЩербакова-ч9с3 жыл бұрын
It finally hit me! Thank you so much!!
@zoekane28253 жыл бұрын
Your handwriting is music to my eyes
@tomdexter49963 жыл бұрын
This is the best proof of the FTC I have ever seen! :)
@control55866 жыл бұрын
incredible explanation
@mhick333310 ай бұрын
Great presentation thanks
@dheerajpannem33367 жыл бұрын
This was an awesome video, really helped me out
@Santos-cz1mz Жыл бұрын
Amazing video, thanks! Question: Why do we have constant "a" and variable "x"? What would happen if they were different?
@slcmathpc Жыл бұрын
Since "a" is left as an arbitrary constant, you can certainly think of it as a variable, but one that we do not let vary in this case; to prove the result, we only need to let "x" vary.
@Santos-cz1mz Жыл бұрын
@@slcmathpc Thanks a lot!! And (sorry for the dumb questions) what would happen if x didn't vary as well?
@slcmathpc Жыл бұрын
Well, we need to vary x since we want to show that the rate of change of the area function A(x) is f(x), so if we don't vary x, then we don't have a proof. ;-)
@Santos-cz1mz Жыл бұрын
@@slcmathpc 😄😄Thanks!!!
@chewboxout4 жыл бұрын
Great explanation!
@green-sd2nn Жыл бұрын
this is beautiful
@mitchellloren35687 жыл бұрын
Fantastic video!
@rohanrana57255 жыл бұрын
thanks sir..u clear my concept🙏🙏
@gustavjohansson16422 жыл бұрын
You could have said that, formally, that you are using the mean value theorem for definite integrals.
@matharp26533 жыл бұрын
This is amazing. The explanation was perfect, the visual element was amazing, and you did a perfect job in making me love another element of calculus through a proof.
@lizardgvng1314 жыл бұрын
You absolute god
@slcmathpc4 жыл бұрын
I appreciate the sentiment and I thank you for making me laugh! :-) Good luck with your studies!
@intheshell35ify3 жыл бұрын
Ironically that was also the proof of my stupidity.
@louism.498010 ай бұрын
Thank you! :)
@TheRamsatya5 жыл бұрын
Ever best one...
@noone76924 ай бұрын
Hello, I have a simple and dumb question to ask. Why are we changing the integral f(x)dx from limit [a,x] to a dummy variable f(t)dt. To put it clear why are we using the dummy variable t u or v specifically ?. What will the consequences if we still integrste without changing it to the dummy variable?
@slcmathpc4 ай бұрын
It is to avoid what is commonly known as a "clash of variables". The actual variable in this instance is the upper bound of integration, which we chose to label as "x". The variable, say "v", in the integrand "f(v)dv" is what is known as a "dummy variable", since it is not a consequential variable and is completely independent of the upper bound of integration "x". Writing the integrand "f(v)dv" as "f(x)dx" seems to suggest that the "x" in "f(x)dx" has something to do with the upper bound of integration "x", which is simply not the case. Writing the integrand as "f(x)dx" and using "x" as the upper bound of integration causes a "clash" between the two expressions, which again, have nothing to do with one another. Hope this clears things up!
@noone76924 ай бұрын
@@slcmathpc thank you
@abdulhafizuddin956 жыл бұрын
thanks you sir.. i've been thinking a way to prove FToC to my student.. but i think my explanation was too hard.. this helps me a lot.. you deserve a cookie..
@slcmathpc6 жыл бұрын
No milk? :-)
@zainolariffin49366 жыл бұрын
Kau melayu ke? Ajar aku
@abdulhafizuddin955 жыл бұрын
@@zainolariffin4936 haah der melayu malaysia.. ajar? Mcm mn..
@mryup61005 жыл бұрын
@@slcmathpc lol
@mryup61005 жыл бұрын
@@slcmathpc 🍼 I mean 🥛
@evanroderick913 жыл бұрын
how is the "C = -F(a)" applicable to all cases and not just the integral between 'a' and 'a'?
@slcmathpc3 жыл бұрын
Since the equality is true for all values of x, then it must be true for x=a, which shows that C=-F(a). There is nothing deeper going on. ;-)
@evanroderick913 жыл бұрын
@slcmath@pc how was it shown that it is true for all values of 'x'?
@LucasPinheiroV83 жыл бұрын
Uau!!!! Thanks!!! The best explanation!
@theoyanto2 жыл бұрын
truly brilliant
@slcmathpc2 жыл бұрын
:-)
@sulgunrejepova38675 жыл бұрын
Wonderfull. Thanks Sir sooooooo much
@ChinaLostBeats4 жыл бұрын
a great video, thank you
@ramrajmainali123 Жыл бұрын
splendid
@slcmathpc Жыл бұрын
:-)
@clay01052 жыл бұрын
very interesting and useful, however i have a doubt. from de beginning you use the statement ∫f(x)dx=F(x) + C , if F'(x)=f(x), why? Isn’t that what we want to proof or demostrate? It gives me the notion that is used as a true statement from the beginning or what is the intention to use this statement in this video? i'm so sorry if i'm misinterpreted the whole thing, please explain me please please please, thanks for a great video 😉
@slcmathpc2 жыл бұрын
I suggest that you review the distinction between the two types of integrals: the definite integral and the indefinite integral. :-)
@clay01052 жыл бұрын
@@slcmathpc thanks then, is the indefinite integral defined like an axiom already accepted? Sorry for my lack of knowledge , I actually think I know the difference between definite and indefinite integral, but I'm trying to figure out why the indefinite integral is defined in this way [∫f(x)dx=F(x) + C] thank you for your understanding and patience
@slcmathpc2 жыл бұрын
It is nothing more than a definition, so the indefinite integral of a function is defined as the class of all functions whose derivative is equal to the original function. The definite integral of a function over a closed and bounded interval is defined as the limit of a corresponding Riemann sum. It should seem strange at first to use quite similar notation for two very seemingly different objects (indefinite vs definite integral), but they are deeply connected by the Fundamental Theorem of Calculus, which states that under the assumption of continuity, one can evaluate the definite integral using a difference of an antiderivative at the endpoints of the corresponding interval instead of taking the limit of a Riemann sum, which is a far more challenging task. I hope this helps! ;-)
@clay01052 жыл бұрын
@@slcmathpc thank you so much this is just what i needed ^^
@jannesl91284 жыл бұрын
great one
@Gebev3 жыл бұрын
Man how good this is!
@daniellecoutre88783 жыл бұрын
Why have you included the +C when writing F(x)+c equals the integral from x to a of f(t)? Wouldnt the +C be cancelled out anyway due to the limits
@slcmathpc3 жыл бұрын
If F(x) is some antiderivative of f(x), then all antiderivatives of f(x) are of the form F(x)+C. Since the area function A(x) is an antiderivative of f(x), then it must be the case that A(x)=F(x)+C.
@daniellecoutre88783 жыл бұрын
@@slcmathpc Isn't that only the case for indefinite integrals? in this proof we are dealing with a definite integral, so wouldnt the constant simply cancel out?
@slcmathpc3 жыл бұрын
When stating that all antiderivatives of f(x) are of the form F(x)+C, the constant C is indefinite, which means that it can range over all real numbers. Out of these infinitely many antiderivatives, one of them must be equal to A(x), which means that there is a unique/definite value of C such that A(x)=F(x)+C. In the first case, C is an indefinite constant, but in the second case, C is a definite constant and so it has a unique value. If this double use of C still confuses you, then simply write A(x)=F(x)+c, where lower case "c" is a unique/special value of upper case "C".
@andrewnachamkin70715 жыл бұрын
Amazing!
@NamTran-rz9uy4 жыл бұрын
great vid
@johnq48413 жыл бұрын
this is gold, omg
@slcmathpc3 жыл бұрын
You are an individual of taste I see. :-)
@wantsomesushi64145 жыл бұрын
Beautiful
@jhaokip2310 ай бұрын
Is there any theorem on the existence of x hat?
@slcmathpc10 ай бұрын
The Intermediate Value Theorem for continuous functions. :-)
@jhaokip2310 ай бұрын
@@slcmathpc Thanks. Will look into it.
@andreasstorvik57727 жыл бұрын
think you made it too simple
@blablabla12a5 жыл бұрын
Very cool
@Ahmed-vs1ui4 жыл бұрын
Hold up I thought there was no C cuz the C from the first integral cancels the C from the second
@slcmathpc4 жыл бұрын
Be sure not to confuse the indefinite integral from the definite integral.
@Ahmed-vs1ui4 жыл бұрын
@@slcmathpc so am i right about defenite integrals
@mryup61005 жыл бұрын
So goood
@johnjernigan53484 жыл бұрын
It is indeed a clear video. Unfortunately the claim between 7:15 and 7:40 is wrong, but intuitively it is nice.
@slcmathpc4 жыл бұрын
Assuming that the function y=f(x) is continuous over the range of integration, the claim is true. It follows directly from the traditional Intermediate Value Theorem.
@ycombinator7654 жыл бұрын
@@slcmathpc I am very glad I found your video but tbh, I caught that too, the claim, as per your clarification is true only for continuous function per that considered region and wont hold true if the function were not nice. But as we all saw, intuitively it clicked for the given instance. From your following, it would sometimes be misinterpreted and Fundamental Theorem of Calculus would seem limited only to nicely linear type functions whose graph is continuous smoothly. A nicer approach would be to let h approach zero in the very first iteration. By the way, nice explanation. Keep it up bro. Am looking forward to more.
@ggamil1964 жыл бұрын
You sound like 3blue1brown , by the way .
@jadshmeis13893 жыл бұрын
Wowwww
@unknownnepali7725 жыл бұрын
This made lot of sense but it is not complete proof....
@charlessmith64125 жыл бұрын
Would you be so kind as to indicate what is missing? Honestly, I don't know what makes this proof incomplete.
@unknownnepali7725 жыл бұрын
@@charlessmith6412 i mean there is much more standard proof of this theorem.
@charlessmith64125 жыл бұрын
Aabhash Pokharel: Do you have a recommendation for a source on a better exposition either in print or youtube? If you do I'd really appreciate it.
@unknownnepali7725 жыл бұрын
Charles Smith still searching,whenever i will get i will surely share it with you....but i really don't think this is complete.....sorry for that.
@charlessmith64125 жыл бұрын
Aabhash Pokharel: Don't be sorry. I'm trying to deepen my understanding, and anything you can contribute will help. Thanks for your efforts.