The Fundamental Theorem of Calculus - Proof

  Рет қаралды 78,515

slcmath@pc

slcmath@pc

Күн бұрын

Пікірлер: 127
@markkennedy9767
@markkennedy9767 4 жыл бұрын
This is remarkably well motivated. Something you don't get in crappy calculus classes or texts. The way he motivates the mean value theorem's role in the proof (what both parts of the proof hinge on) is lovely.
@PopDeek23
@PopDeek23 2 жыл бұрын
This proof is so clearly explained in this video it gave me goosebumps! Wonderful!
@slcmathpc
@slcmathpc 2 жыл бұрын
Great!
@שחראוסי-פ1ב
@שחראוסי-פ1ב 5 жыл бұрын
seen several explanations, this one us the best so far
@Rougesteelproject
@Rougesteelproject 2 жыл бұрын
5:40 This is when I finally understood how the Fundamental Theorem works. Thank you so much!
@chessandmathguy
@chessandmathguy 5 жыл бұрын
This has got to be one of the most beautiful things I've seen in a while. Subscribed!
@josuerios190
@josuerios190 7 жыл бұрын
Thanks, I'm a student from Colombia, and I can understand the proof. You are great teacher, thank you, very much
@BatterflyHigh
@BatterflyHigh 6 жыл бұрын
THIS MADE SO MUCH SENSE, THANK YOU SO MUCH
@mathbrainius
@mathbrainius 3 жыл бұрын
Clear explanation. The speed of the presentation is perfect, too.
@charlessmith6412
@charlessmith6412 5 жыл бұрын
I have only seen the approach of using an area function A(x) once before. And that was in Calculus for Dummies. This exposition is much clearer. Thank you very much for an excellent video.
@lindavadnais8093
@lindavadnais8093 4 жыл бұрын
Like poetry. This eloquently takes the listener back to the classroom of Newton and Leibniz, or at least what I would imagine it to be. Damn good!
@slcmathpc
@slcmathpc 4 жыл бұрын
Very much appreciated, though I am not sure to be worthy of such high praise. :-)
@roydaboii9925
@roydaboii9925 Жыл бұрын
This is so much better than sal khan's proof
@Aman_iitbh
@Aman_iitbh Жыл бұрын
goosebump literally ,how easily u explained
@ayoubdiri4553
@ayoubdiri4553 7 жыл бұрын
i wish if we had such explanation ways in moroccan classes excellent video i'm waiting your works
@santiospina4504
@santiospina4504 5 жыл бұрын
Thankyou very much!! I have been searching for this proof so many times!!
@desrucca
@desrucca 2 жыл бұрын
Thanks alot! This is the best and the simplest explanation i've ever seen
@slcmathpc
@slcmathpc 2 жыл бұрын
:-)
@ObiajuluEmma-Ebere
@ObiajuluEmma-Ebere 5 ай бұрын
Excellent!! From Nigeria, thank you.
@wagsman9999
@wagsman9999 4 жыл бұрын
Nice. I always thought the FTC was a bit circular, but now I SEE THE LIGHT. Thanks.
@slcmathpc
@slcmathpc 4 жыл бұрын
Glad to hear! It is such a beautiful and powerful result!
@paulboro5278
@paulboro5278 3 жыл бұрын
King of simplicity.
@lalalajessica3752
@lalalajessica3752 5 жыл бұрын
Thank you so much! This is a really clear proof!
@danny89620
@danny89620 2 жыл бұрын
This is the greatest video on KZbin
@wesrobertson8753
@wesrobertson8753 3 жыл бұрын
Thank you! I get what my books have been trying to explain now. And about time to. This is going on a poster on my wall word for word!
@kidusabebe2645
@kidusabebe2645 3 жыл бұрын
This is What I call Feynman Technique. Thanks a lot.
@agumondigimon
@agumondigimon 4 жыл бұрын
Thank you for the explanation!
@Santos-cz1mz
@Santos-cz1mz Жыл бұрын
By the way, thanks for providing material that we can download on your web page!
@slcmathpc
@slcmathpc Жыл бұрын
I have just posted a new version of the integral calculus (Math NYB) course pack that contains some very nice additional stuff if you're curious. :-)
@Santos-cz1mz
@Santos-cz1mz Жыл бұрын
@@slcmathpc That's great, thanks!!
@_DD_15
@_DD_15 5 жыл бұрын
Beautifully done!
@caomoletimoloi6565
@caomoletimoloi6565 4 жыл бұрын
You are the best!!! You don't deserve this number of views and subscribers. You deserve so much more than that.
@gustavosedano294
@gustavosedano294 7 жыл бұрын
¡Amazing! Simple but logical
@caomoletimoloi6565
@caomoletimoloi6565 4 жыл бұрын
You are a life savior. I never really understood F.T.C but after watching this video i realised It was easy. Thank you so much
@slcmathpc
@slcmathpc 4 жыл бұрын
I am glad to hear that one more person in the world appreciates and understands this beautiful result!
@smoothacceleration437
@smoothacceleration437 5 жыл бұрын
Beautiful proof in beautiful handwriting.
@DenisBencic
@DenisBencic 5 жыл бұрын
Holy shit this was awesome. Thank you!
@zakusa9891
@zakusa9891 6 жыл бұрын
clear video but tsill dont get it. the independent variables are so confusing gustavo
@ЕлизаветаЩербакова-ч9с
@ЕлизаветаЩербакова-ч9с 3 жыл бұрын
It finally hit me! Thank you so much!!
@zoekane2825
@zoekane2825 3 жыл бұрын
Your handwriting is music to my eyes
@tomdexter4996
@tomdexter4996 3 жыл бұрын
This is the best proof of the FTC I have ever seen! :)
@control5586
@control5586 6 жыл бұрын
incredible explanation
@mhick3333
@mhick3333 10 ай бұрын
Great presentation thanks
@dheerajpannem3336
@dheerajpannem3336 7 жыл бұрын
This was an awesome video, really helped me out
@Santos-cz1mz
@Santos-cz1mz Жыл бұрын
Amazing video, thanks! Question: Why do we have constant "a" and variable "x"? What would happen if they were different?
@slcmathpc
@slcmathpc Жыл бұрын
Since "a" is left as an arbitrary constant, you can certainly think of it as a variable, but one that we do not let vary in this case; to prove the result, we only need to let "x" vary.
@Santos-cz1mz
@Santos-cz1mz Жыл бұрын
@@slcmathpc Thanks a lot!! And (sorry for the dumb questions) what would happen if x didn't vary as well?
@slcmathpc
@slcmathpc Жыл бұрын
Well, we need to vary x since we want to show that the rate of change of the area function A(x) is f(x), so if we don't vary x, then we don't have a proof. ;-)
@Santos-cz1mz
@Santos-cz1mz Жыл бұрын
@@slcmathpc 😄😄Thanks!!!
@chewboxout
@chewboxout 4 жыл бұрын
Great explanation!
@green-sd2nn
@green-sd2nn Жыл бұрын
this is beautiful
@mitchellloren3568
@mitchellloren3568 7 жыл бұрын
Fantastic video!
@rohanrana5725
@rohanrana5725 5 жыл бұрын
thanks sir..u clear my concept🙏🙏
@gustavjohansson1642
@gustavjohansson1642 2 жыл бұрын
You could have said that, formally, that you are using the mean value theorem for definite integrals.
@matharp2653
@matharp2653 3 жыл бұрын
This is amazing. The explanation was perfect, the visual element was amazing, and you did a perfect job in making me love another element of calculus through a proof.
@lizardgvng131
@lizardgvng131 4 жыл бұрын
You absolute god
@slcmathpc
@slcmathpc 4 жыл бұрын
I appreciate the sentiment and I thank you for making me laugh! :-) Good luck with your studies!
@intheshell35ify
@intheshell35ify 3 жыл бұрын
Ironically that was also the proof of my stupidity.
@louism.4980
@louism.4980 10 ай бұрын
Thank you! :)
@TheRamsatya
@TheRamsatya 5 жыл бұрын
Ever best one...
@noone7692
@noone7692 4 ай бұрын
Hello, I have a simple and dumb question to ask. Why are we changing the integral f(x)dx from limit [a,x] to a dummy variable f(t)dt. To put it clear why are we using the dummy variable t u or v specifically ?. What will the consequences if we still integrste without changing it to the dummy variable?
@slcmathpc
@slcmathpc 4 ай бұрын
It is to avoid what is commonly known as a "clash of variables". The actual variable in this instance is the upper bound of integration, which we chose to label as "x". The variable, say "v", in the integrand "f(v)dv" is what is known as a "dummy variable", since it is not a consequential variable and is completely independent of the upper bound of integration "x". Writing the integrand "f(v)dv" as "f(x)dx" seems to suggest that the "x" in "f(x)dx" has something to do with the upper bound of integration "x", which is simply not the case. Writing the integrand as "f(x)dx" and using "x" as the upper bound of integration causes a "clash" between the two expressions, which again, have nothing to do with one another. Hope this clears things up!
@noone7692
@noone7692 4 ай бұрын
@@slcmathpc thank you
@abdulhafizuddin95
@abdulhafizuddin95 6 жыл бұрын
thanks you sir.. i've been thinking a way to prove FToC to my student.. but i think my explanation was too hard.. this helps me a lot.. you deserve a cookie..
@slcmathpc
@slcmathpc 6 жыл бұрын
No milk? :-)
@zainolariffin4936
@zainolariffin4936 6 жыл бұрын
Kau melayu ke? Ajar aku
@abdulhafizuddin95
@abdulhafizuddin95 5 жыл бұрын
@@zainolariffin4936 haah der melayu malaysia.. ajar? Mcm mn..
@mryup6100
@mryup6100 5 жыл бұрын
@@slcmathpc lol
@mryup6100
@mryup6100 5 жыл бұрын
@@slcmathpc 🍼 I mean 🥛
@evanroderick91
@evanroderick91 3 жыл бұрын
how is the "C = -F(a)" applicable to all cases and not just the integral between 'a' and 'a'?
@slcmathpc
@slcmathpc 3 жыл бұрын
Since the equality is true for all values of x, then it must be true for x=a, which shows that C=-F(a). There is nothing deeper going on. ;-)
@evanroderick91
@evanroderick91 3 жыл бұрын
@slcmath@pc how was it shown that it is true for all values of 'x'?
@LucasPinheiroV8
@LucasPinheiroV8 3 жыл бұрын
Uau!!!! Thanks!!! The best explanation!
@theoyanto
@theoyanto 2 жыл бұрын
truly brilliant
@slcmathpc
@slcmathpc 2 жыл бұрын
:-)
@sulgunrejepova3867
@sulgunrejepova3867 5 жыл бұрын
Wonderfull. Thanks Sir sooooooo much
@ChinaLostBeats
@ChinaLostBeats 4 жыл бұрын
a great video, thank you
@ramrajmainali123
@ramrajmainali123 Жыл бұрын
splendid
@slcmathpc
@slcmathpc Жыл бұрын
:-)
@clay0105
@clay0105 2 жыл бұрын
very interesting and useful, however i have a doubt. from de beginning you use the statement ∫f(x)dx=F(x) + C , if F'(x)=f(x), why? Isn’t that what we want to proof or demostrate? It gives me the notion that is used as a true statement from the beginning or what is the intention to use this statement in this video? i'm so sorry if i'm misinterpreted the whole thing, please explain me please please please, thanks for a great video 😉
@slcmathpc
@slcmathpc 2 жыл бұрын
I suggest that you review the distinction between the two types of integrals: the definite integral and the indefinite integral. :-)
@clay0105
@clay0105 2 жыл бұрын
​@@slcmathpc thanks then, is the indefinite integral defined like an axiom already accepted? Sorry for my lack of knowledge , I actually think I know the difference between definite and indefinite integral, but I'm trying to figure out why the indefinite integral is defined in this way [∫f(x)dx=F(x) + C] thank you for your understanding and patience
@slcmathpc
@slcmathpc 2 жыл бұрын
It is nothing more than a definition, so the indefinite integral of a function is defined as the class of all functions whose derivative is equal to the original function. The definite integral of a function over a closed and bounded interval is defined as the limit of a corresponding Riemann sum. It should seem strange at first to use quite similar notation for two very seemingly different objects (indefinite vs definite integral), but they are deeply connected by the Fundamental Theorem of Calculus, which states that under the assumption of continuity, one can evaluate the definite integral using a difference of an antiderivative at the endpoints of the corresponding interval instead of taking the limit of a Riemann sum, which is a far more challenging task. I hope this helps! ;-)
@clay0105
@clay0105 2 жыл бұрын
@@slcmathpc thank you so much this is just what i needed ^^
@jannesl9128
@jannesl9128 4 жыл бұрын
great one
@Gebev
@Gebev 3 жыл бұрын
Man how good this is!
@daniellecoutre8878
@daniellecoutre8878 3 жыл бұрын
Why have you included the +C when writing F(x)+c equals the integral from x to a of f(t)? Wouldnt the +C be cancelled out anyway due to the limits
@slcmathpc
@slcmathpc 3 жыл бұрын
If F(x) is some antiderivative of f(x), then all antiderivatives of f(x) are of the form F(x)+C. Since the area function A(x) is an antiderivative of f(x), then it must be the case that A(x)=F(x)+C.
@daniellecoutre8878
@daniellecoutre8878 3 жыл бұрын
@@slcmathpc Isn't that only the case for indefinite integrals? in this proof we are dealing with a definite integral, so wouldnt the constant simply cancel out?
@slcmathpc
@slcmathpc 3 жыл бұрын
When stating that all antiderivatives of f(x) are of the form F(x)+C, the constant C is indefinite, which means that it can range over all real numbers. Out of these infinitely many antiderivatives, one of them must be equal to A(x), which means that there is a unique/definite value of C such that A(x)=F(x)+C. In the first case, C is an indefinite constant, but in the second case, C is a definite constant and so it has a unique value. If this double use of C still confuses you, then simply write A(x)=F(x)+c, where lower case "c" is a unique/special value of upper case "C".
@andrewnachamkin7071
@andrewnachamkin7071 5 жыл бұрын
Amazing!
@NamTran-rz9uy
@NamTran-rz9uy 4 жыл бұрын
great vid
@johnq4841
@johnq4841 3 жыл бұрын
this is gold, omg
@slcmathpc
@slcmathpc 3 жыл бұрын
You are an individual of taste I see. :-)
@wantsomesushi6414
@wantsomesushi6414 5 жыл бұрын
Beautiful
@jhaokip23
@jhaokip23 10 ай бұрын
Is there any theorem on the existence of x hat?
@slcmathpc
@slcmathpc 10 ай бұрын
The Intermediate Value Theorem for continuous functions. :-)
@jhaokip23
@jhaokip23 10 ай бұрын
@@slcmathpc Thanks. Will look into it.
@andreasstorvik5772
@andreasstorvik5772 7 жыл бұрын
think you made it too simple
@blablabla12a
@blablabla12a 5 жыл бұрын
Very cool
@Ahmed-vs1ui
@Ahmed-vs1ui 4 жыл бұрын
Hold up I thought there was no C cuz the C from the first integral cancels the C from the second
@slcmathpc
@slcmathpc 4 жыл бұрын
Be sure not to confuse the indefinite integral from the definite integral.
@Ahmed-vs1ui
@Ahmed-vs1ui 4 жыл бұрын
@@slcmathpc so am i right about defenite integrals
@mryup6100
@mryup6100 5 жыл бұрын
So goood
@johnjernigan5348
@johnjernigan5348 4 жыл бұрын
It is indeed a clear video. Unfortunately the claim between 7:15 and 7:40 is wrong, but intuitively it is nice.
@slcmathpc
@slcmathpc 4 жыл бұрын
Assuming that the function y=f(x) is continuous over the range of integration, the claim is true. It follows directly from the traditional Intermediate Value Theorem.
@ycombinator765
@ycombinator765 4 жыл бұрын
@@slcmathpc I am very glad I found your video but tbh, I caught that too, the claim, as per your clarification is true only for continuous function per that considered region and wont hold true if the function were not nice. But as we all saw, intuitively it clicked for the given instance. From your following, it would sometimes be misinterpreted and Fundamental Theorem of Calculus would seem limited only to nicely linear type functions whose graph is continuous smoothly. A nicer approach would be to let h approach zero in the very first iteration. By the way, nice explanation. Keep it up bro. Am looking forward to more.
@ggamil196
@ggamil196 4 жыл бұрын
You sound like 3blue1brown , by the way .
@jadshmeis1389
@jadshmeis1389 3 жыл бұрын
Wowwww
@unknownnepali772
@unknownnepali772 5 жыл бұрын
This made lot of sense but it is not complete proof....
@charlessmith6412
@charlessmith6412 5 жыл бұрын
Would you be so kind as to indicate what is missing? Honestly, I don't know what makes this proof incomplete.
@unknownnepali772
@unknownnepali772 5 жыл бұрын
@@charlessmith6412 i mean there is much more standard proof of this theorem.
@charlessmith6412
@charlessmith6412 5 жыл бұрын
Aabhash Pokharel: Do you have a recommendation for a source on a better exposition either in print or youtube? If you do I'd really appreciate it.
@unknownnepali772
@unknownnepali772 5 жыл бұрын
Charles Smith still searching,whenever i will get i will surely share it with you....but i really don't think this is complete.....sorry for that.
@charlessmith6412
@charlessmith6412 5 жыл бұрын
Aabhash Pokharel: Don't be sorry. I'm trying to deepen my understanding, and anything you can contribute will help. Thanks for your efforts.
The Fundamental Theorem of Calculus - Example 1
15:03
slcmath@pc
Рет қаралды 2,9 М.
They Chose Kindness Over Abuse in Their Team #shorts
00:20
I migliori trucchetti di Fabiosa
Рет қаралды 12 МЛН
What type of pedestrian are you?😄 #tiktok #elsarca
00:28
Elsa Arca
Рет қаралды 32 МЛН
1, 2, 3, 4, 5, 6, 7, 8, 9 🙈⚽️
00:46
Celine Dept
Рет қаралды 111 МЛН
Fundamental Theorem of Calculus Parts 1&2
15:48
Prime Newtons
Рет қаралды 14 М.
Fundamental Theorem of Calculus Explained | Outlier.org
16:27
OutlierOrg
Рет қаралды 369 М.
Fundamental Theorem of Calculus 1  |  Geometric Idea + Chain Rule Example
11:04
What is Integration? 3 Ways to Interpret Integrals
10:55
Math The World
Рет қаралды 396 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
Real Analysis 56 | Proof of the Fundamental Theorem of Calculus
12:18
The Bright Side of Mathematics
Рет қаралды 10 М.
Calculus: Why does integrating a function give area under its curve?
9:36
Mathematical Methods for physics and Engineering
Рет қаралды 24 М.