The Integral Test - Proof

  Рет қаралды 19,844

slcmath@pc

slcmath@pc

Күн бұрын

Пікірлер: 37
@rodioniskhakov905
@rodioniskhakov905 10 ай бұрын
Man, that was a crystal clear explanation. My respect!
@minus4025
@minus4025 2 ай бұрын
Very clear and easy to follow. Thanks.
@sumsumiho
@sumsumiho 7 ай бұрын
Thank you so much for such a detailed and easy-to-follow explanation!
@kaleyschuster1951
@kaleyschuster1951 6 жыл бұрын
Thank you for walking through this proof in such a clear, direct way. I am taking Analysis and this helped me a lot
@raghumalhotra3490
@raghumalhotra3490 5 жыл бұрын
Lovely bro...God bless you
@muhammedalshaer3333
@muhammedalshaer3333 5 жыл бұрын
Great content!👍
@amoghviswanath8264
@amoghviswanath8264 9 жыл бұрын
really love ur videos man, thank you so much for your help!!!
@DenisBencic
@DenisBencic 5 жыл бұрын
This was very comprehensive. Thank you :)
@MuhammadSaqib
@MuhammadSaqib Жыл бұрын
Hats offf
@joehd2009
@joehd2009 6 жыл бұрын
Amazing thank you
@jamesrobertson9149
@jamesrobertson9149 6 жыл бұрын
very good.
@diamondmat4380
@diamondmat4380 3 жыл бұрын
thx !it help me a lot to get it
@danielmichaeli2633
@danielmichaeli2633 Жыл бұрын
Thanks for the intuitive explanation! One question though: why do we use the ≤ ≥ signs instead of ? Is it not obvious that the area of the rectangles will in fact be larger / smaller than the area under the curve? In what case will they be equal?
@slcmathpc
@slcmathpc Жыл бұрын
You can imagine an unusual function where parts of it are constant over some intervals.
@shreyjoshi4891
@shreyjoshi4891 4 жыл бұрын
Thank you for the clear and concise explanation. I spent a while trying to understand the wikipedia proof for this but it was too verbose for a beginner.
@slcmathpc
@slcmathpc 4 жыл бұрын
That is the downside of Wikipedia; it is a great repository of information but not always presented in an intuitive fashion.
@AB-tl5xb
@AB-tl5xb 7 жыл бұрын
thnx a lot :)
@harshdmp0
@harshdmp0 7 жыл бұрын
Thanx sir :)
@sunitapandey1195
@sunitapandey1195 5 жыл бұрын
Aap DTU me mechanical engineering ke student jo na
@mktbhandari
@mktbhandari 8 жыл бұрын
Did you not miss that the function f should be continuous?
@slcmathpc
@slcmathpc 8 жыл бұрын
It is enough for the function to be Riemann integrable, which is a weaker condition than continuity, but this gets a bit more technical so this is why I omitted it.
@Rsingh1
@Rsingh1 4 жыл бұрын
Can i know the book from which its taken ?please!!
@slcmathpc
@slcmathpc 4 жыл бұрын
I do not use a book, sorry. I simply try to present ideas in the clearest and most intuitive fashion.
@Rsingh1
@Rsingh1 4 жыл бұрын
@@slcmathpc oh okay
@michaelqi8443
@michaelqi8443 7 жыл бұрын
why does the function need to be eventually decreasing? can it be increasing?
@slcmathpc
@slcmathpc 7 жыл бұрын
To make the desired inequalities work, we need the function to be eventually decreasing. Moreover, if the function is increasing, then the individual terms of the series will not converge to zero and so the series will diverge by the Divergence Test yielding a much simpler problem.
@michaelqi8443
@michaelqi8443 7 жыл бұрын
+slcmath@pc but if its increasing, dont the inequality signs just flip? then unless im missing something, that would allow the proof to be made regardless if it is decreasing. for example, 1/n diverges from the integral test but why do you have to prove its decreasing first? if you take the integral immediately you still end up with its divergence.
@slcmathpc
@slcmathpc 7 жыл бұрын
Yes, you can make it work but when the function is increasing, the much simpler Divergence Test applies to show divergence of the series; it's all in the spirit of keeping things as simple as possible. :-)
@michaelqi8443
@michaelqi8443 7 жыл бұрын
slcmath@pc then you wouldnt have to prove its decreasing, would you?
@slcmathpc
@slcmathpc 7 жыл бұрын
Not every function is eventually increasing or decreasing; the question must be investigated.
@JoffreyB
@JoffreyB 6 жыл бұрын
Why u haven’t taken in the second picture integral up until N+1? I mean u could summarize with right rectangles as well as with same previous points. Why did u pick up just until N?
@arsenron
@arsenron 6 жыл бұрын
Because he takes right boundary of rectangles: when you reach N, your last rectangle will have N as its right boundary. Vice versa, in the first case, when you reach N, you will have N as left boundary and N + 1 as its right boundary respectively.
@JoffreyB
@JoffreyB 6 жыл бұрын
i can't understand how did u merge two COMPLETELY DIFFERENT series, which represent DIFFERENT SUM into one inequality?? Somebody please explain this to me
@D3tyHuff
@D3tyHuff 6 жыл бұрын
They aren't different series. The first one is the function evaluated on the left end of the sum of rectangles, while the other one is the function evaluated on the right hand of the rectangles, and both summed up to N. If you evaluate the right hand side of the rectangles, all you really do is start at n=2, therefore when you add the first term (a1), you get the summation of the left hand side of the rectangles (starting from n=1 to N), and you can bring the two integrals into an inequality.
The Integral Test - Example 1
11:01
slcmath@pc
Рет қаралды 1,9 М.
Q231, The Idea Behind The Integral Test
19:14
blackpenredpen
Рет қаралды 27 М.
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
The Limit Comparison Test - Proof
11:03
slcmath@pc
Рет қаралды 13 М.
Integral Test | Derivation & 1st Example
8:55
Dr. Trefor Bazett
Рет қаралды 42 М.
Estimating Sums Using the Integral Test and Comparison Test
9:56
Professor Dave Explains
Рет қаралды 59 М.
Learn English Through Story || Graded Reader || Improve Your English || Listen And Practice
16:14
StoryStudies - Learn English Through Story
Рет қаралды 283
Absolute Convergence Test - Proof
7:37
slcmath@pc
Рет қаралды 12 М.
Integral test | Series | AP Calculus BC | Khan Academy
8:46
Khan Academy
Рет қаралды 268 М.
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН