The Math Behind Generative Adversarial Networks Clearly Explained!

  Рет қаралды 84,622

Normalized Nerd

Normalized Nerd

Күн бұрын

Пікірлер: 167
@marinafuster7005
@marinafuster7005 Жыл бұрын
I almost never leave comments... this is an amazing summary of the mathematical aspect and quirks of the paper. Thank you!
@sharvani_0779
@sharvani_0779 10 ай бұрын
This video is a perfect and most explanatory video on this topic, absolutely love it.
@KaniskaM-yg9wq
@KaniskaM-yg9wq 6 ай бұрын
This is the Best resource fo gan i've come across so far. Very detailed explanation with complicating the terms. You are a life saver! . thank you
@vijayshankar102
@vijayshankar102 4 жыл бұрын
This is a well made and well explained video, one can be extremely grateful to you for this
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks a lot!
@jourytasnim7107
@jourytasnim7107 3 жыл бұрын
you deserve Best explanation award
@mitalihalder1
@mitalihalder1 3 жыл бұрын
Amazing.. Just no words. Standing ovation to you.
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
means a lot ❤
@bhattbhavesh91
@bhattbhavesh91 3 жыл бұрын
Hey Sujan, I just started learning GANs and I happen to stumble upon your video & your channel ! Great work :) You have a bright future ahead :)
@wolfywolfgang2498
@wolfywolfgang2498 2 жыл бұрын
Woah !!!! I consider myself bad at math, but this video was like a hot knife in my dense but butterish brain! thank you !
@parisdettorre3008
@parisdettorre3008 Жыл бұрын
Congratulation....one of best marh explanations of GAN ever🎉🎉
@ruju-tt5sy
@ruju-tt5sy 8 ай бұрын
Truly an exceptional and informative video! Literally made me understand the concept very well!!
@danielwamriew9614
@danielwamriew9614 6 ай бұрын
Thanks Sujan for the excellent tutorial on the math behind GANs. I just started learning about GANs today, and cleared my eyes on the subject.Kudos!
@JaishreeramCoder
@JaishreeramCoder 7 ай бұрын
This is exactly what I wanted. Your explanation was amazing and very clear.
@Lena-of7wd
@Lena-of7wd 3 жыл бұрын
This is the best explanation I’ve found on GANs, thank you!! I’m currently training a DCGAN, however in terms of theory, are there any differences between DCGAN vs GAN as from my understanding, the difference is DCGAN utilizes deep convolution networks and GAN utilizes fully connected layers, however is the theory described in this video also applied to DCGAN? Thanks for your help, appreciate it!
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Yeah, same theory. As you correctly mentioned, just replace fully connected layers with conv and pooling layers.
@staffankonstholm3506
@staffankonstholm3506 3 жыл бұрын
You are my favorite person on the internet right now
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
😁😁
@nch77884
@nch77884 Жыл бұрын
Great explanation for something as complex as GAN.
@gamerbattle2554
@gamerbattle2554 3 жыл бұрын
The first well explained GAN I've ever seen, thanks
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Thanks! :D
@rxzin7201
@rxzin7201 Ай бұрын
Thanks, got saved for Deep Learning exam
@muhammadwaseem_
@muhammadwaseem_ Жыл бұрын
Why is your channel so underrated ?!!!
@RambutanLaw
@RambutanLaw 3 жыл бұрын
I like how he pronounce "z" as "zed" but "G of Z" as "G of zee".
@yashbhambhu6633
@yashbhambhu6633 3 жыл бұрын
I present you the indian english : )
@jourytasnim7107
@jourytasnim7107 3 жыл бұрын
focus on the message he is explaining not the pronunciation
@porku5059
@porku5059 Жыл бұрын
This was a fantastic video, Im might actually pass my class now!
@roro-v3z
@roro-v3z 2 ай бұрын
really good explanation!! Understood clearly
@diby4283
@diby4283 9 ай бұрын
I'm really thankful. Great explanation!
@rivetinggull2596
@rivetinggull2596 3 жыл бұрын
Thank you! Very well explained. Mentioned all the underlying mathematical concepts on which GAN is based on.
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Most welcome!
@OmerBoehm
@OmerBoehm 3 жыл бұрын
Brilliant presentation - simplifies the math using intuitive explanations and examples (same for the video about the binary cross entropy ) - thank you for this
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
❤️❤️
@stevea8201
@stevea8201 3 жыл бұрын
Really nice, I really like the part at 11:52, made that part so much easier to understand with that visual example
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Thanks mate :D
@lcslima45
@lcslima45 2 жыл бұрын
How do you get the equation of binary cross entropy from the cross entropy definition?
@cs2466
@cs2466 2 жыл бұрын
Thanks for the great effort in making the videos. God bless you
@petsart3792
@petsart3792 4 жыл бұрын
Thanks for explaining this advanced topic!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Glad you liked it. Keep supporting the channel :D
@utsavbandyopadhyaymaulik9006
@utsavbandyopadhyaymaulik9006 Жыл бұрын
Clear mathematical explanation
@amirhosseinboreiri3360
@amirhosseinboreiri3360 3 жыл бұрын
Wow.this was very educational. Please make more videos on gans.
@yashmore3525
@yashmore3525 4 жыл бұрын
This is a great explanation! I'd love to see more in depth videos! If you could cover autoencoders that'd be really cool too!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks! I have one for autoencoders: kzbin.info/www/bejne/o2Okqp-gea2Mm9U
@alexandrakogan2840
@alexandrakogan2840 4 жыл бұрын
Thank you so much for this video! *I think the JS divergence equation needs a second ln sign after ...+1/2 Ex pg ? The equation appears at 12:53. Thank you again!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Oh...You are right. I forgot the ln sign. Thanks for pointing this out :D
@alexandrakogan2840
@alexandrakogan2840 4 жыл бұрын
@@NormalizedNerd Great, just wanted to make sure I understood this correctly :)) Thank you!!
@greenufo_0108
@greenufo_0108 4 жыл бұрын
Dude. Awesome!! Literally you explain better than medium "how to"'s :) expecting awesome content
@greenufo_0108
@greenufo_0108 4 жыл бұрын
Nice explanation next lets create a neuro network from scratch
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
@Green UFO_010 thank you man! Yeah more interesting videos are on the way. Keep supporting :D
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Neural Network from scratch is definitely in my bucket list!
@demoredemore933
@demoredemore933 3 жыл бұрын
Wow wow Thank you! Well explained.
@vivekkandeyang6175
@vivekkandeyang6175 2 жыл бұрын
Thanks for such a great explanation
@arshamafsardeir2692
@arshamafsardeir2692 2 жыл бұрын
Good explanation. Thank you!
@prakashdey7356
@prakashdey7356 4 ай бұрын
Best video on Gan
@teetanrobotics5363
@teetanrobotics5363 3 жыл бұрын
Amaizng video bro..Could you please make a playlist for Deep learning(include this video) and/or reinforcement learning.
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Ok I'll try to create a playlist.
@victitova3811
@victitova3811 3 жыл бұрын
Thank you very much for the video! Can someone help me and explain why 1 - was dropped at 12:30
@SJ23982398
@SJ23982398 3 жыл бұрын
What would really help is if you add links to your videos if some concepts in a video have been discussed more in depth. So if I don't understand some concept that is glossed over here I can scroll down and click the video that explains it in more depth.
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Feedback noted!
@tanmoym6241
@tanmoym6241 Жыл бұрын
Nice tutorial. Which software you are using for writing on the board here ?
@nitinkumarmittal4369
@nitinkumarmittal4369 3 жыл бұрын
Thank you for posting this!
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
My pleasure!
@danielnenov3882
@danielnenov3882 3 жыл бұрын
Do you provide personal lessons? @normalized nerd
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Sorry, but I don't.
@Rajkumar-sm6bi
@Rajkumar-sm6bi 3 жыл бұрын
Great, dont stop! Keep making such nice videos.
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
More to come!
@MovieTheater69
@MovieTheater69 Жыл бұрын
Great work thank you very very much❤
@johntzimiskes1480
@johntzimiskes1480 2 жыл бұрын
Very nice explanation
@anonymousvector729
@anonymousvector729 3 жыл бұрын
Amazing video. I'm still confuse that what is difference between normal GAN vs GAN CLS? Can you explain a little bit
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
In GAN CLS, the input is a sentence vector + some noise. In normal GAN it's just noise.
@anonymousvector729
@anonymousvector729 3 жыл бұрын
@@NormalizedNerd would love to see your video on GAN vs GAN CLS if you make one.
@archiexzzz
@archiexzzz 7 ай бұрын
was very easy to understand. thank you
@shashanksharma21
@shashanksharma21 3 жыл бұрын
Incredibly well made !
@10xGarden
@10xGarden 4 жыл бұрын
wow, gan er gan beregelo amar thanks for that.
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Hee Hee ❤️❤️
@FRANKONATOR123
@FRANKONATOR123 2 жыл бұрын
Such a good explanation, man! Thank you so much!!
@Marco-m7o7b
@Marco-m7o7b Жыл бұрын
What about the sign he told us to forget? should it not be considered at the end? why?
@stanislavzamecnik3049
@stanislavzamecnik3049 3 жыл бұрын
Extremely good explanation!!!!
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Thanks! :D
@casualcomputer6544
@casualcomputer6544 3 жыл бұрын
Best explanation ever!
@felixz7273
@felixz7273 4 жыл бұрын
Thanks! Wonderful explanation. But it seems that 9:58 needs to adding a sum sign in front of the square brackets.
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
The summation is taken care by the inner loop
@goldfishjy95
@goldfishjy95 3 жыл бұрын
This is so.. GOOD! Thank you so much!!!!
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
❤❤
@sefika9825
@sefika9825 4 жыл бұрын
Very informative. Thanks for this clear explanation!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
You are welcome!
@TejasPatil-fz6bo
@TejasPatil-fz6bo 3 жыл бұрын
Would like to see Use of Regularization functions/terms in loss function through equations....Plz make VDO on this
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Btw I talked about l1, l2 regularization a bit here: kzbin.info/www/bejne/fJq2qmmwjKmZn6M
@onlyumangsri
@onlyumangsri Жыл бұрын
Very well explained. Can you once try gan inversion as well?
@HappinessYata
@HappinessYata Жыл бұрын
I didn't manage to understand starting from Binary Crossentropy Function :(
@mithilgaonkar7676
@mithilgaonkar7676 2 жыл бұрын
Well, thanks for the transfer learning🤭... You have explained it in a very crisp manner.. Keep up the good work 👍
@NormalizedNerd
@NormalizedNerd 2 жыл бұрын
My pleasure 😊
@ahmadatta66
@ahmadatta66 3 жыл бұрын
thank you. Great explanation
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
You are welcome!
@theupsider
@theupsider 3 жыл бұрын
Amazing video man!
@amisha4891
@amisha4891 7 ай бұрын
Outstanding content
@harshraj22_
@harshraj22_ 3 жыл бұрын
Hey ! What does it mean, when people say, data points/ images/ texts (on which we train our model) belong to a distribution ? What is its inuitive meaning about belonging to a distribution and how are they sure about the real life data belonging to a distribution ?
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
I really liked your question. So here's the thing... I hope you are comfortable with the distributions in 1 or 2 dimensions e.g. distribution of height and weight of a population. Now imagine we are talking about images. Can we represent an image with 1 or 2 dimensions? No. For a 256px*256px RGB image we need 256*256*3 dimensions. Suppose you have 1000 such images of flowers. Now you can plot the pixel values in each dimension right? If you do this for 1000 images you will get the pixel distribution or simply the distribution of your dataset. Then the goal of your ML model will be to capture this distribution. I talked about pixels but the idea can be used in words (text data) also. And something belonging to a distribution means it follows (looks similar) the training dataset. Obviously in Statistics we can mathematically say if something belongs to a distribution or not. But intuitively it means "looks similar".
@arisceznyk
@arisceznyk 3 жыл бұрын
Awesome explaination
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Glad you think so!
@theankitkurmi
@theankitkurmi 4 жыл бұрын
Nicely explained. Do make a playlist of regression classification nlp deep learning so that we can easily follow up. Great job 👌👌👌
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks! Actually, I have playlists for NLP, ML from scratch. Will try to make one for Deep Learning.
@adityarajora7219
@adityarajora7219 2 жыл бұрын
9:29 in gradient update part, why would generator try to make good images.....as D(g(z)) will be close to zero imples nothing to learn for generator...I dint get ascent and descent at all from any video
@olympics3948
@olympics3948 Жыл бұрын
Great job!!
@Menor55672
@Menor55672 4 жыл бұрын
what whiteboard software is that ?
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Microsoft OneNote
@subratswain6775
@subratswain6775 3 жыл бұрын
What platform you're using for the videos?
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
For this video I used Microsoft OneNote
@subratswain6775
@subratswain6775 3 жыл бұрын
@@NormalizedNerd no for the animation
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
@@subratswain6775 For the animations I use manim (open source python library)
@subratswain6775
@subratswain6775 3 жыл бұрын
@@NormalizedNerd can you send the installation steps. I tried to create but couldn't
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
@@subratswain6775 I'll suggest you to follow youtube tutorials for installing manim. It's not very easy to set up.
@KUMAR-ne2mb
@KUMAR-ne2mb 3 жыл бұрын
It was great explanation
@mk-wh6mv
@mk-wh6mv 4 жыл бұрын
Great Explanation!!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Glad you liked that :D
@alexandermoralespanitz8772
@alexandermoralespanitz8772 3 жыл бұрын
Excelent video!
@sandipandhar4143
@sandipandhar4143 4 жыл бұрын
Good initiative but very similar to Ahlad Kumar's explanation.
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks for your feedback. I actually didn't know about that.
@user-cc8kb
@user-cc8kb 3 жыл бұрын
Cool video, thank you very much :)
@mdnahiduzzaman2719
@mdnahiduzzaman2719 8 ай бұрын
Spectacular
@TheAcujlGamer
@TheAcujlGamer 3 жыл бұрын
Loved that intro 👌
@sourabhbhattacharya9133
@sourabhbhattacharya9133 3 жыл бұрын
sera porali bhai
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
onek dhonnyobad bhai!
@bSharpHacker
@bSharpHacker 3 жыл бұрын
Great video, thanks! The label of 0 for the reconstructed image. Is that correct? According to another reference I have, it should set the labels to 1 to fool the discriminator into thinking the image is real? Edit, my bad. Yes, you are correct, feeding y = 0 into the discriminator is correct. The label 1 is then used to train the generator :)
@DungPham-ai
@DungPham-ai 4 жыл бұрын
great job ! thank so much
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
@Dung Pham You're welcome! Support this channel for more videos :D
@garyzhai9540
@garyzhai9540 2 жыл бұрын
I believe the presenter is knowledgeable. However, some details are not well explained and not consistent, such as 11:46, he mentioned that this formula and there is no intuitive explanation, as this type of KZbin presentation is for the general public who has no in-depth of understanding of either maths or deep-learning.
@rakshitverma5016
@rakshitverma5016 3 жыл бұрын
great video!
@homakashefiamiri3749
@homakashefiamiri3749 6 күн бұрын
it was wonderful.
@gisellerodrigues571
@gisellerodrigues571 4 жыл бұрын
So I heard someone saying it's easier for the discriminator to predict a fake data than It is for the generator to create a fake data who could pass as original. That would make the system unbalaced. Is It true and If so, Is there a way to fix It?
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
@Giselle Rodrigues Yes, it is true especially at the initial stages of the training. As a matter of fact, GANs are very unstable. It generally requires a lot of trial and error to find the best architecture (and other hyper-parameters) for a given dataset. But luckily, researchers have found some ways to improve the training. Here, you can find some of them. machinelearningmastery.com/how-to-train-stable-generative-adversarial-networks/
@gisellerodrigues571
@gisellerodrigues571 4 жыл бұрын
@@NormalizedNerd thank you for the reply!!! I wasn't expecting It to be so fast! Haha I am gonna read It and maybe come back with more questions. Hahaha
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Haha. Sure. Keep supporting.
@sulemanshehzad6205
@sulemanshehzad6205 4 жыл бұрын
Amazing, keep up the good work (y)
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Thanks man!
@jonsnow9246
@jonsnow9246 3 жыл бұрын
Do you use tablet to make these notes?
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
Yeah
@alaa.abuqtaish
@alaa.abuqtaish 2 жыл бұрын
Thank you
@RamanKumar-dh8iu
@RamanKumar-dh8iu 8 ай бұрын
🎯 Key Takeaways for quick navigation: 00:00 *🧠 Overview of Generative Adversarial Networks (GANs)* - GANs consist of two models: a generative model (G) and a discriminative model (D). - Generative models learn the joint probability distribution of input and output variables, while discriminative models learn the conditional probability of the target variable given the input variable. - GANs use an adversarial setup where the generator produces fake data points, and the discriminator distinguishes between real and fake data, leading to both models improving over time. 02:13 *📊 Structure and Components of GANs* - GANs consist of multi-layered neural networks representing the generator (G) and discriminator (D). - Theta G and theta D represent the weights of the respective networks. - GANs utilize a noise distribution as input to the generator to produce data points similar to the original distribution. 05:26 *🔢 Understanding the Value Function of GANs* - The value function represents the objective of G (minimize) and D (maximize) in the GAN setup. - The value function resembles the binary cross-entropy function, crucial for training GANs. - Expectation (E) is used to calculate the average value over the entire dataset, essential for continuous distributions. 08:37 *🔄 Training Process and Optimization of GANs* - GAN training involves an iterative process where the generator and discriminator alternate updates. - Stochastic gradient descent is used to optimize the loss function. - The discriminator is updated to maximize the value function, while the generator is updated to minimize it. 10:42 *🎯 Convergence and Guarantee of GANs* - The goal is to prove that the generator's distribution converges to the original data distribution. - Jensen-Shannon divergence is a method used to measure the difference between two distributions. - At the global minimum of the value function, the generator's distribution becomes indistinguishable from the original data distribution. 14:48 *⚙️ Phases of GAN Training* - GAN training progresses through phases where initially, both generator and discriminator perform poorly. - As training continues, the discriminator becomes adept at distinguishing real and fake data, while the generator's distribution approaches that of the original data. - At convergence, the discriminator cannot differentiate between real and generated data, achieving the desired outcome. Made with HARPA AI
@jamesang7861
@jamesang7861 4 жыл бұрын
Thank you!
@NormalizedNerd
@NormalizedNerd 4 жыл бұрын
Welcome!
@ChandraPrakash-yj4vx
@ChandraPrakash-yj4vx 7 ай бұрын
Thanks Man
@henrrymendoza
@henrrymendoza 2 жыл бұрын
It's not clear why you replace p_z(z) by p_g(x) when showing global optimality. x and z are on a different space.
@buihung3704
@buihung3704 Жыл бұрын
correct, i still don't get this part, how can he do that? it's true that they can have the same range of values (both are images with same width x height dimension) but that doesn't mean they can swapped each other's places?
@jrt6722
@jrt6722 Жыл бұрын
Sorry please teach me, I don’t understand how the function V(G,D) corresponds to the loss of generator and discriminator…
@adityakushal8905
@adityakushal8905 9 ай бұрын
V(G, D) is total loss of the model(fake image loss + real image loss), u then do partial derivation with respect to generator and discriminator
@MmmD-jv4ec
@MmmD-jv4ec 9 ай бұрын
Awesome explanation thank you very much. Subscripted
@quocanhnguyen7275
@quocanhnguyen7275 3 жыл бұрын
SOOO GOOOD
@pouryapouryeganeh4280
@pouryapouryeganeh4280 3 жыл бұрын
thanks bro
@NormalizedNerd
@NormalizedNerd 3 жыл бұрын
You're welcome :)
@madhuvarun2790
@madhuvarun2790 3 жыл бұрын
at 0.22, you pronounced content wrong. sound of "con" in content should be like "con" in con man
@vinuvs4996
@vinuvs4996 2 жыл бұрын
mathematically convincing
@chadgregory9037
@chadgregory9037 3 жыл бұрын
AWW, I'm disappointed..... 22,322 views...... so close to 22,222 =]
@jan.kowalski
@jan.kowalski 3 жыл бұрын
"geee izz da virgin ass" lol
Generative Adversarial Networks GAN Loss Function (MinMaxLoss)
5:26
ML & DL Explained
Рет қаралды 7 М.
Generative Adversarial Networks (GANs) - Computerphile
21:21
Computerphile
Рет қаралды 652 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Backpropagation calculus | DL4
10:18
3Blue1Brown
Рет қаралды 3 МЛН
Understand the Math and Theory of GANs in ~ 10 minutes
12:03
WelcomeAIOverlords
Рет қаралды 66 М.
How to Master Deep Learning Math?
13:42
Deep Learning with Yacine
Рет қаралды 9 М.
Diffusion Models | Paper Explanation | Math Explained
33:27
Outlier
Рет қаралды 266 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 399 М.
Decision Tree Classification Clearly Explained!
10:33
Normalized Nerd
Рет қаралды 733 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН