I almost never leave comments... this is an amazing summary of the mathematical aspect and quirks of the paper. Thank you!
@sharvani_077910 ай бұрын
This video is a perfect and most explanatory video on this topic, absolutely love it.
@KaniskaM-yg9wq6 ай бұрын
This is the Best resource fo gan i've come across so far. Very detailed explanation with complicating the terms. You are a life saver! . thank you
@vijayshankar1024 жыл бұрын
This is a well made and well explained video, one can be extremely grateful to you for this
@NormalizedNerd4 жыл бұрын
Thanks a lot!
@jourytasnim71073 жыл бұрын
you deserve Best explanation award
@mitalihalder13 жыл бұрын
Amazing.. Just no words. Standing ovation to you.
@NormalizedNerd3 жыл бұрын
means a lot ❤
@bhattbhavesh913 жыл бұрын
Hey Sujan, I just started learning GANs and I happen to stumble upon your video & your channel ! Great work :) You have a bright future ahead :)
@wolfywolfgang24982 жыл бұрын
Woah !!!! I consider myself bad at math, but this video was like a hot knife in my dense but butterish brain! thank you !
@parisdettorre3008 Жыл бұрын
Congratulation....one of best marh explanations of GAN ever🎉🎉
@ruju-tt5sy8 ай бұрын
Truly an exceptional and informative video! Literally made me understand the concept very well!!
@danielwamriew96146 ай бұрын
Thanks Sujan for the excellent tutorial on the math behind GANs. I just started learning about GANs today, and cleared my eyes on the subject.Kudos!
@JaishreeramCoder7 ай бұрын
This is exactly what I wanted. Your explanation was amazing and very clear.
@Lena-of7wd3 жыл бұрын
This is the best explanation I’ve found on GANs, thank you!! I’m currently training a DCGAN, however in terms of theory, are there any differences between DCGAN vs GAN as from my understanding, the difference is DCGAN utilizes deep convolution networks and GAN utilizes fully connected layers, however is the theory described in this video also applied to DCGAN? Thanks for your help, appreciate it!
@NormalizedNerd3 жыл бұрын
Yeah, same theory. As you correctly mentioned, just replace fully connected layers with conv and pooling layers.
@staffankonstholm35063 жыл бұрын
You are my favorite person on the internet right now
@NormalizedNerd3 жыл бұрын
😁😁
@nch77884 Жыл бұрын
Great explanation for something as complex as GAN.
@gamerbattle25543 жыл бұрын
The first well explained GAN I've ever seen, thanks
@NormalizedNerd3 жыл бұрын
Thanks! :D
@rxzin7201Ай бұрын
Thanks, got saved for Deep Learning exam
@muhammadwaseem_ Жыл бұрын
Why is your channel so underrated ?!!!
@RambutanLaw3 жыл бұрын
I like how he pronounce "z" as "zed" but "G of Z" as "G of zee".
@yashbhambhu66333 жыл бұрын
I present you the indian english : )
@jourytasnim71073 жыл бұрын
focus on the message he is explaining not the pronunciation
@porku5059 Жыл бұрын
This was a fantastic video, Im might actually pass my class now!
@roro-v3z2 ай бұрын
really good explanation!! Understood clearly
@diby42839 ай бұрын
I'm really thankful. Great explanation!
@rivetinggull25963 жыл бұрын
Thank you! Very well explained. Mentioned all the underlying mathematical concepts on which GAN is based on.
@NormalizedNerd3 жыл бұрын
Most welcome!
@OmerBoehm3 жыл бұрын
Brilliant presentation - simplifies the math using intuitive explanations and examples (same for the video about the binary cross entropy ) - thank you for this
@NormalizedNerd3 жыл бұрын
❤️❤️
@stevea82013 жыл бұрын
Really nice, I really like the part at 11:52, made that part so much easier to understand with that visual example
@NormalizedNerd3 жыл бұрын
Thanks mate :D
@lcslima452 жыл бұрын
How do you get the equation of binary cross entropy from the cross entropy definition?
@cs24662 жыл бұрын
Thanks for the great effort in making the videos. God bless you
@petsart37924 жыл бұрын
Thanks for explaining this advanced topic!
@NormalizedNerd4 жыл бұрын
Glad you liked it. Keep supporting the channel :D
@utsavbandyopadhyaymaulik9006 Жыл бұрын
Clear mathematical explanation
@amirhosseinboreiri33603 жыл бұрын
Wow.this was very educational. Please make more videos on gans.
@yashmore35254 жыл бұрын
This is a great explanation! I'd love to see more in depth videos! If you could cover autoencoders that'd be really cool too!
@NormalizedNerd4 жыл бұрын
Thanks! I have one for autoencoders: kzbin.info/www/bejne/o2Okqp-gea2Mm9U
@alexandrakogan28404 жыл бұрын
Thank you so much for this video! *I think the JS divergence equation needs a second ln sign after ...+1/2 Ex pg ? The equation appears at 12:53. Thank you again!
@NormalizedNerd4 жыл бұрын
Oh...You are right. I forgot the ln sign. Thanks for pointing this out :D
@alexandrakogan28404 жыл бұрын
@@NormalizedNerd Great, just wanted to make sure I understood this correctly :)) Thank you!!
@greenufo_01084 жыл бұрын
Dude. Awesome!! Literally you explain better than medium "how to"'s :) expecting awesome content
@greenufo_01084 жыл бұрын
Nice explanation next lets create a neuro network from scratch
@NormalizedNerd4 жыл бұрын
@Green UFO_010 thank you man! Yeah more interesting videos are on the way. Keep supporting :D
@NormalizedNerd4 жыл бұрын
Neural Network from scratch is definitely in my bucket list!
@demoredemore9333 жыл бұрын
Wow wow Thank you! Well explained.
@vivekkandeyang61752 жыл бұрын
Thanks for such a great explanation
@arshamafsardeir26922 жыл бұрын
Good explanation. Thank you!
@prakashdey73564 ай бұрын
Best video on Gan
@teetanrobotics53633 жыл бұрын
Amaizng video bro..Could you please make a playlist for Deep learning(include this video) and/or reinforcement learning.
@NormalizedNerd3 жыл бұрын
Ok I'll try to create a playlist.
@victitova38113 жыл бұрын
Thank you very much for the video! Can someone help me and explain why 1 - was dropped at 12:30
@SJ239823983 жыл бұрын
What would really help is if you add links to your videos if some concepts in a video have been discussed more in depth. So if I don't understand some concept that is glossed over here I can scroll down and click the video that explains it in more depth.
@NormalizedNerd3 жыл бұрын
Feedback noted!
@tanmoym6241 Жыл бұрын
Nice tutorial. Which software you are using for writing on the board here ?
@nitinkumarmittal43693 жыл бұрын
Thank you for posting this!
@NormalizedNerd3 жыл бұрын
My pleasure!
@danielnenov38823 жыл бұрын
Do you provide personal lessons? @normalized nerd
@NormalizedNerd3 жыл бұрын
Sorry, but I don't.
@Rajkumar-sm6bi3 жыл бұрын
Great, dont stop! Keep making such nice videos.
@NormalizedNerd3 жыл бұрын
More to come!
@MovieTheater69 Жыл бұрын
Great work thank you very very much❤
@johntzimiskes14802 жыл бұрын
Very nice explanation
@anonymousvector7293 жыл бұрын
Amazing video. I'm still confuse that what is difference between normal GAN vs GAN CLS? Can you explain a little bit
@NormalizedNerd3 жыл бұрын
In GAN CLS, the input is a sentence vector + some noise. In normal GAN it's just noise.
@anonymousvector7293 жыл бұрын
@@NormalizedNerd would love to see your video on GAN vs GAN CLS if you make one.
@archiexzzz7 ай бұрын
was very easy to understand. thank you
@shashanksharma213 жыл бұрын
Incredibly well made !
@10xGarden4 жыл бұрын
wow, gan er gan beregelo amar thanks for that.
@NormalizedNerd4 жыл бұрын
Hee Hee ❤️❤️
@FRANKONATOR1232 жыл бұрын
Such a good explanation, man! Thank you so much!!
@Marco-m7o7b Жыл бұрын
What about the sign he told us to forget? should it not be considered at the end? why?
@stanislavzamecnik30493 жыл бұрын
Extremely good explanation!!!!
@NormalizedNerd3 жыл бұрын
Thanks! :D
@casualcomputer65443 жыл бұрын
Best explanation ever!
@felixz72734 жыл бұрын
Thanks! Wonderful explanation. But it seems that 9:58 needs to adding a sum sign in front of the square brackets.
@NormalizedNerd4 жыл бұрын
The summation is taken care by the inner loop
@goldfishjy953 жыл бұрын
This is so.. GOOD! Thank you so much!!!!
@NormalizedNerd3 жыл бұрын
❤❤
@sefika98254 жыл бұрын
Very informative. Thanks for this clear explanation!
@NormalizedNerd4 жыл бұрын
You are welcome!
@TejasPatil-fz6bo3 жыл бұрын
Would like to see Use of Regularization functions/terms in loss function through equations....Plz make VDO on this
@NormalizedNerd3 жыл бұрын
Btw I talked about l1, l2 regularization a bit here: kzbin.info/www/bejne/fJq2qmmwjKmZn6M
@onlyumangsri Жыл бұрын
Very well explained. Can you once try gan inversion as well?
@HappinessYata Жыл бұрын
I didn't manage to understand starting from Binary Crossentropy Function :(
@mithilgaonkar76762 жыл бұрын
Well, thanks for the transfer learning🤭... You have explained it in a very crisp manner.. Keep up the good work 👍
@NormalizedNerd2 жыл бұрын
My pleasure 😊
@ahmadatta663 жыл бұрын
thank you. Great explanation
@NormalizedNerd3 жыл бұрын
You are welcome!
@theupsider3 жыл бұрын
Amazing video man!
@amisha48917 ай бұрын
Outstanding content
@harshraj22_3 жыл бұрын
Hey ! What does it mean, when people say, data points/ images/ texts (on which we train our model) belong to a distribution ? What is its inuitive meaning about belonging to a distribution and how are they sure about the real life data belonging to a distribution ?
@NormalizedNerd3 жыл бұрын
I really liked your question. So here's the thing... I hope you are comfortable with the distributions in 1 or 2 dimensions e.g. distribution of height and weight of a population. Now imagine we are talking about images. Can we represent an image with 1 or 2 dimensions? No. For a 256px*256px RGB image we need 256*256*3 dimensions. Suppose you have 1000 such images of flowers. Now you can plot the pixel values in each dimension right? If you do this for 1000 images you will get the pixel distribution or simply the distribution of your dataset. Then the goal of your ML model will be to capture this distribution. I talked about pixels but the idea can be used in words (text data) also. And something belonging to a distribution means it follows (looks similar) the training dataset. Obviously in Statistics we can mathematically say if something belongs to a distribution or not. But intuitively it means "looks similar".
@arisceznyk3 жыл бұрын
Awesome explaination
@NormalizedNerd3 жыл бұрын
Glad you think so!
@theankitkurmi4 жыл бұрын
Nicely explained. Do make a playlist of regression classification nlp deep learning so that we can easily follow up. Great job 👌👌👌
@NormalizedNerd4 жыл бұрын
Thanks! Actually, I have playlists for NLP, ML from scratch. Will try to make one for Deep Learning.
@adityarajora72192 жыл бұрын
9:29 in gradient update part, why would generator try to make good images.....as D(g(z)) will be close to zero imples nothing to learn for generator...I dint get ascent and descent at all from any video
@olympics3948 Жыл бұрын
Great job!!
@Menor556724 жыл бұрын
what whiteboard software is that ?
@NormalizedNerd4 жыл бұрын
Microsoft OneNote
@subratswain67753 жыл бұрын
What platform you're using for the videos?
@NormalizedNerd3 жыл бұрын
For this video I used Microsoft OneNote
@subratswain67753 жыл бұрын
@@NormalizedNerd no for the animation
@NormalizedNerd3 жыл бұрын
@@subratswain6775 For the animations I use manim (open source python library)
@subratswain67753 жыл бұрын
@@NormalizedNerd can you send the installation steps. I tried to create but couldn't
@NormalizedNerd3 жыл бұрын
@@subratswain6775 I'll suggest you to follow youtube tutorials for installing manim. It's not very easy to set up.
@KUMAR-ne2mb3 жыл бұрын
It was great explanation
@mk-wh6mv4 жыл бұрын
Great Explanation!!
@NormalizedNerd4 жыл бұрын
Glad you liked that :D
@alexandermoralespanitz87723 жыл бұрын
Excelent video!
@sandipandhar41434 жыл бұрын
Good initiative but very similar to Ahlad Kumar's explanation.
@NormalizedNerd4 жыл бұрын
Thanks for your feedback. I actually didn't know about that.
@user-cc8kb3 жыл бұрын
Cool video, thank you very much :)
@mdnahiduzzaman27198 ай бұрын
Spectacular
@TheAcujlGamer3 жыл бұрын
Loved that intro 👌
@sourabhbhattacharya91333 жыл бұрын
sera porali bhai
@NormalizedNerd3 жыл бұрын
onek dhonnyobad bhai!
@bSharpHacker3 жыл бұрын
Great video, thanks! The label of 0 for the reconstructed image. Is that correct? According to another reference I have, it should set the labels to 1 to fool the discriminator into thinking the image is real? Edit, my bad. Yes, you are correct, feeding y = 0 into the discriminator is correct. The label 1 is then used to train the generator :)
@DungPham-ai4 жыл бұрын
great job ! thank so much
@NormalizedNerd4 жыл бұрын
@Dung Pham You're welcome! Support this channel for more videos :D
@garyzhai95402 жыл бұрын
I believe the presenter is knowledgeable. However, some details are not well explained and not consistent, such as 11:46, he mentioned that this formula and there is no intuitive explanation, as this type of KZbin presentation is for the general public who has no in-depth of understanding of either maths or deep-learning.
@rakshitverma50163 жыл бұрын
great video!
@homakashefiamiri37496 күн бұрын
it was wonderful.
@gisellerodrigues5714 жыл бұрын
So I heard someone saying it's easier for the discriminator to predict a fake data than It is for the generator to create a fake data who could pass as original. That would make the system unbalaced. Is It true and If so, Is there a way to fix It?
@NormalizedNerd4 жыл бұрын
@Giselle Rodrigues Yes, it is true especially at the initial stages of the training. As a matter of fact, GANs are very unstable. It generally requires a lot of trial and error to find the best architecture (and other hyper-parameters) for a given dataset. But luckily, researchers have found some ways to improve the training. Here, you can find some of them. machinelearningmastery.com/how-to-train-stable-generative-adversarial-networks/
@gisellerodrigues5714 жыл бұрын
@@NormalizedNerd thank you for the reply!!! I wasn't expecting It to be so fast! Haha I am gonna read It and maybe come back with more questions. Hahaha
@NormalizedNerd4 жыл бұрын
Haha. Sure. Keep supporting.
@sulemanshehzad62054 жыл бұрын
Amazing, keep up the good work (y)
@NormalizedNerd4 жыл бұрын
Thanks man!
@jonsnow92463 жыл бұрын
Do you use tablet to make these notes?
@NormalizedNerd3 жыл бұрын
Yeah
@alaa.abuqtaish2 жыл бұрын
Thank you
@RamanKumar-dh8iu8 ай бұрын
🎯 Key Takeaways for quick navigation: 00:00 *🧠 Overview of Generative Adversarial Networks (GANs)* - GANs consist of two models: a generative model (G) and a discriminative model (D). - Generative models learn the joint probability distribution of input and output variables, while discriminative models learn the conditional probability of the target variable given the input variable. - GANs use an adversarial setup where the generator produces fake data points, and the discriminator distinguishes between real and fake data, leading to both models improving over time. 02:13 *📊 Structure and Components of GANs* - GANs consist of multi-layered neural networks representing the generator (G) and discriminator (D). - Theta G and theta D represent the weights of the respective networks. - GANs utilize a noise distribution as input to the generator to produce data points similar to the original distribution. 05:26 *🔢 Understanding the Value Function of GANs* - The value function represents the objective of G (minimize) and D (maximize) in the GAN setup. - The value function resembles the binary cross-entropy function, crucial for training GANs. - Expectation (E) is used to calculate the average value over the entire dataset, essential for continuous distributions. 08:37 *🔄 Training Process and Optimization of GANs* - GAN training involves an iterative process where the generator and discriminator alternate updates. - Stochastic gradient descent is used to optimize the loss function. - The discriminator is updated to maximize the value function, while the generator is updated to minimize it. 10:42 *🎯 Convergence and Guarantee of GANs* - The goal is to prove that the generator's distribution converges to the original data distribution. - Jensen-Shannon divergence is a method used to measure the difference between two distributions. - At the global minimum of the value function, the generator's distribution becomes indistinguishable from the original data distribution. 14:48 *⚙️ Phases of GAN Training* - GAN training progresses through phases where initially, both generator and discriminator perform poorly. - As training continues, the discriminator becomes adept at distinguishing real and fake data, while the generator's distribution approaches that of the original data. - At convergence, the discriminator cannot differentiate between real and generated data, achieving the desired outcome. Made with HARPA AI
@jamesang78614 жыл бұрын
Thank you!
@NormalizedNerd4 жыл бұрын
Welcome!
@ChandraPrakash-yj4vx7 ай бұрын
Thanks Man
@henrrymendoza2 жыл бұрын
It's not clear why you replace p_z(z) by p_g(x) when showing global optimality. x and z are on a different space.
@buihung3704 Жыл бұрын
correct, i still don't get this part, how can he do that? it's true that they can have the same range of values (both are images with same width x height dimension) but that doesn't mean they can swapped each other's places?
@jrt6722 Жыл бұрын
Sorry please teach me, I don’t understand how the function V(G,D) corresponds to the loss of generator and discriminator…
@adityakushal89059 ай бұрын
V(G, D) is total loss of the model(fake image loss + real image loss), u then do partial derivation with respect to generator and discriminator
@MmmD-jv4ec9 ай бұрын
Awesome explanation thank you very much. Subscripted
@quocanhnguyen72753 жыл бұрын
SOOO GOOOD
@pouryapouryeganeh42803 жыл бұрын
thanks bro
@NormalizedNerd3 жыл бұрын
You're welcome :)
@madhuvarun27903 жыл бұрын
at 0.22, you pronounced content wrong. sound of "con" in content should be like "con" in con man
@vinuvs49962 жыл бұрын
mathematically convincing
@chadgregory90373 жыл бұрын
AWW, I'm disappointed..... 22,322 views...... so close to 22,222 =]