The Orthogonality of Hermite Polynomials

  Рет қаралды 15,882

Physics and Math Lectures

Physics and Math Lectures

Күн бұрын

Пікірлер: 13
@MisterTutor2010
@MisterTutor2010 4 ай бұрын
When I figured this out before dinner yesterday, I thought I was wrong because what if m < m? This video pointed out to me that m and n can switched so I had figured the solution correctly all along.
@FunnCubes
@FunnCubes 3 жыл бұрын
I screamed at my computer at how easy that was. I tried to do it unsuccessfully on my own for a day...... omg..... Thank you so much.
@physicsandmathlectures3289
@physicsandmathlectures3289 3 жыл бұрын
You're welcome!
@sanderscheel
@sanderscheel 3 жыл бұрын
Great Video and thank you for the clear explanation!
@physicsandmathlectures3289
@physicsandmathlectures3289 3 жыл бұрын
Glad it was helpful!
@ventrue1999
@ventrue1999 4 жыл бұрын
At 5:29 , why is it just exp(- x^2)? I know the result will still be 0, but not quite following that jump. Thanks
@physicsandmathlectures3289
@physicsandmathlectures3289 4 жыл бұрын
I'm skipping a few steps in that part. The idea is that each time we do integration by parts we generate a boundary term and a new integral where we take the derivative that is on one term (the e^(-x^2) in this case) and then move it over to the other term (the Hermite polynomial). If we do that a total of m times then we have the sum of boundary terms, as well as that term in red with e^(-x^2). The important fact is that all of the boundary terms go to zero because they all have a factor of e^(-x^2), so we really are just left with the integral involving only e^(-x^2)
@Rdffuguihug
@Rdffuguihug Жыл бұрын
Excellent video. Thanks for sharing.
@MrMagraden
@MrMagraden Жыл бұрын
One question, why the evaluation of the first term is 0 because of the gaussian? We don't have only to take into account the infinity but the central part, where the density is concentred
@vasundarakrishnan4093
@vasundarakrishnan4093 2 жыл бұрын
You are sooo awesome. Legit.
@captainfartolini4335
@captainfartolini4335 2 жыл бұрын
you are assuming H_n is poly in the limit, but was that shown?
@domenicagarzon6787
@domenicagarzon6787 2 жыл бұрын
why can you rewrite the hermitian pol as a derivative ?
@calypo1491
@calypo1491 Жыл бұрын
It follows from the Definition of the Hermitian Polynomial: H_m(x)=(-1)^m * exp(x^2)*d^n/dx^n(exp(-x^2)). The (-1)^m is pulled out of the integral bc of linearity. The exp(x^2) and the exp(-x^2) in the Integral cancel each other and the derivative of exp(-x^2) is the only term that is left.
What Are Orthogonal Polynomials? Inner Products on the Space of Functions
10:52
Introduction to Hermite Polynomials
6:14
Physics and Math Lectures
Рет қаралды 41 М.
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН
How to have fun with a child 🤣 Food wrap frame! #shorts
0:21
BadaBOOM!
Рет қаралды 17 МЛН
Жездуха 42-серия
29:26
Million Show
Рет қаралды 2,6 МЛН
Every team from the Bracket Buster! Who ya got? 😏
0:53
FailArmy Shorts
Рет қаралды 13 МЛН
Laguerre Polynomial Orthogonality
9:28
Physics and Math Lectures
Рет қаралды 9 М.
10,000 Problems in Analysis
22:22
Struggling Grad Student
Рет қаралды 92 М.
7 Outside The Box Puzzles
12:16
MindYourDecisions
Рет қаралды 144 М.
Chebyshev Polynomial Orthogonality
9:12
Physics and Math Lectures
Рет қаралды 14 М.
If you're ambitious but lazy, please watch this video...
12:57
Mark Tilbury
Рет қаралды 453 М.
Hermite Polynomial Recurrence Relations
9:57
Physics and Math Lectures
Рет қаралды 15 М.
Hermite Polynomial Generating Function
6:50
Physics and Math Lectures
Рет қаралды 12 М.
Function Orthogonality Explained
11:13
Jordan Louis Edmunds
Рет қаралды 60 М.
The Trig Hiding Inside the Factorials (And Harmonic Numbers)
19:06
Lines That Connect
Рет қаралды 170 М.
integral of sin(x)/x from 0 to inf by Feynman's Technique
22:44
blackpenredpen
Рет қаралды 1,2 МЛН
Какой я клей? | CLEX #shorts
0:59
CLEX
Рет қаралды 1,9 МЛН