The Practical Guide to Semidefinite Programming (2/4)

  Рет қаралды 17,747

Visually Explained

Visually Explained

Күн бұрын

Пікірлер: 32
@tuongnguyen9391
@tuongnguyen9391 2 жыл бұрын
this video is so much underated, this is the clearest explanation one can find on the internet about semidefinite programming without having to study control theory or Mr Boyd convex optimization course. The animation of the feasible region as a 3D object completely blow my mind yet it does send a powerful message regarding the beatiful nature of semidefinite programming. Very difficult to express appreciation with my limited vocabulary
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
I really really appreciated your nice comment, and I am glad you liked the video!!
@kodirovsshik
@kodirovsshik 2 жыл бұрын
Why does this channel have 4 thousand subscribers and not 4 million, it would be truly deserved Another awesome video tho, and looking forward for 3rd part!
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
Yayy!! Thanks for the support, I really appreciate it!
@jcamargo2005
@jcamargo2005 8 ай бұрын
If you align the first vector with [1, 0, 0], you see the 3 vectors are on xy plane, separated by 120 degrees.
@danschultz777
@danschultz777 Жыл бұрын
I love these videos, but I feel like the pacing is a bit fast. If you slowed down the explanations in the video by 25% that would be very helpful to me. Keep up the great work!
@VisuallyExplained
@VisuallyExplained Жыл бұрын
Fair enough, thanks for the valuable feedback!
@artr0x93
@artr0x93 2 жыл бұрын
really like these visualizations! I'm just now getting into SDPs for computer vision, would love to see a video on how different SDP solvers work internally. That's pretty much a mystery to me, and it's hard to find good explanations
@shyambhagwat
@shyambhagwat 2 жыл бұрын
Truly awesome Bashir! Subscribed for more content !!
@Darkev77
@Darkev77 4 күн бұрын
@4:49 anyone know why we needed to keep positivity when minimizing the alpha? I.e., why did we minimize alpha in such a way that it makes the matrix positive semi-definite? Is it because we know that the matrix can be decomposed into V^⊤ V?
@jimlbeaver
@jimlbeaver 2 жыл бұрын
I've never heard of this...great explanation. thanks very much!
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
You're very welcome! :-)
@SonLeTyP9496
@SonLeTyP9496 2 жыл бұрын
As always, what an extraordinary content, Bakhir :)
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
Thanks a ton!!!
@stevensolomon9399
@stevensolomon9399 8 ай бұрын
Awesome content! Thank you🎉
@ehTrotcoD
@ehTrotcoD 2 жыл бұрын
When writing A=C^TC isn't C more akin to the Cholesky decomposition and a square root of A would be B=A^(1/2)? I know this notation is used sometimes, but it seems confusing to refer to C as a square root since you would think you could just square it too get back A, but you actually have to transpose one of the C. In particular, sqrtm from scipy uses the more traditional definition of a square root.
@renanwilliamprado5380
@renanwilliamprado5380 Жыл бұрын
You are right! This is not the actual definition of square root.
@nithingovindarajan3178
@nithingovindarajan3178 4 ай бұрын
Yes, that is indeed correct. A matrix B is a square root of a matrix A if B^2 = A. Thus, if we consider the spectral decomposition of A = V diag(lambda_1, ... , lambda_n) V^T, and set B = V diag(sqrt(lambda_1), ... , sqrt(lambda_n)) V*, we get what we wanted. Notice also that B is a symmetric matrix, so B^2 = B^T B = A
@sw98630
@sw98630 2 жыл бұрын
Great!!! Ive had a trouble of getting visual intuituon of SDP and it helps a lot!!
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
Fantastic! Great to hear!
@qr-ec8vd
@qr-ec8vd 2 жыл бұрын
love these, do you accept donations?
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
I don’t take donations, but I accept nice comments. Thank you!
@fabricetshinangi5042
@fabricetshinangi5042 2 жыл бұрын
Great video. 👍
@iamnottellingumyname
@iamnottellingumyname 2 жыл бұрын
Hey! So I know that for an nxn matrix, the min alpha is -1/(n-1). How would I go about proving this? I can’t think of a general system of equations for the eigenvalues
@iamnottellingumyname
@iamnottellingumyname 2 жыл бұрын
Absolutely beautiful videos by the way!
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
​@@iamnottellingumyname ​ That's a fun problem! Here is an elegant solution that doesn't require too much computation. Let M be the matrix with ones on the diagonal, and alpha on on the off diagonal. We want the smallest alpha s.t. M stays psd. We can write M = alpha * J + (1-alpha)* I, where J is the all one matrix and I is the identity matrix. It's not hard to show J has rank one, with eigenvalues (n, 0, ..., 0). This means that the eigenvalues of alpha*J are (n*alpha, 0, ..., 0). Adding (1-alpha)*I shifts all the eigenvalues by (1-alpha), so the eigenvalues of M are (n*alph+(1-alpha), 1-alpha, ..., 1-alpha). From there you can easily show that min alpha is -1/(n-1).
@iamnottellingumyname
@iamnottellingumyname 2 жыл бұрын
@@VisuallyExplained that’s a really beautiful solution!! Appreciate the reply, keep up the good work
@fabricetshinangi5042
@fabricetshinangi5042 2 жыл бұрын
I noticed that u used python in many of the videos u posted.Can u recommend me a book that can help to quickly learn how to solve NP in python.
@VisuallyExplained
@VisuallyExplained 2 жыл бұрын
If you mean solving NP-hard problems, I am afraid even the almighty python cannot do that ... If you mean getting good-enough solutions for NP-hard problems, then I have a feeling that you might like the next video ;)
@tsunningwah3471
@tsunningwah3471 4 ай бұрын
is there a mistake?
@Kevin.Kawchak
@Kevin.Kawchak 10 ай бұрын
Thank you
@tsunningwah3471
@tsunningwah3471 4 ай бұрын
壓力大
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
5. Positive Definite and Semidefinite Matrices
45:27
MIT OpenCourseWare
Рет қаралды 161 М.
The Dome Paradox: A Loophole in Newton's Laws
22:59
Up and Atom
Рет қаралды 301 М.
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
What Is Mathematical Optimization?
11:35
Visually Explained
Рет қаралды 139 М.
Positive Definite Matrices
21:41
MIT OpenCourseWare
Рет қаралды 93 М.
Matrix Transpose and the Four Fundamental Subspaces
13:45
Ben Newman
Рет қаралды 35 М.
Duality: Lagrangian and dual problem
13:50
Michel Bierlaire
Рет қаралды 74 М.
The Art of Linear Programming
18:56
Tom S
Рет қаралды 710 М.
5 Math Skills Every Programmer Needs
9:08
Sahil & Sarra
Рет қаралды 1,1 МЛН