The Ratio Test - Proof of Part (a)

  Рет қаралды 20,620

slcmath@pc

slcmath@pc

Күн бұрын

Пікірлер: 17
@stevenkaban
@stevenkaban 5 ай бұрын
thank you very much for proving a lot of infinite series' tests to the world
@saisai2824
@saisai2824 9 жыл бұрын
Thanks so much for this! It was very helpful and you're a great teacher.
@JnSubli
@JnSubli 8 ай бұрын
Hi, My understanding for series to diverge is when "nth divergence test" must also meet this criteria lim n→∞ aₙ = lim n→∞+1 aₙ ......= lim n→∞+∞ aₙ ≠ 0 else they would either Diverge (don't summed up to a real number) or Undefined (if all summed up to zero and infinitely repeating). Example for aₙ terms that are lim n→∞ (-1)^n or lim n→∞ sin(n) is Undefined. And for your case above lim n→∞ |aₙ| = ∞ ⇒ lim n→∞ aₙ ≠ 0 it may not meet lim n→∞ aₙ = lim n→∞+1 aₙ because lim n→∞ aₙ and n→∞+1 aₙ could also be +- aside from ++ or -- according to the ratio test |aₙ₊₁/aₙ| > 1. It Diverge only because the terms didn't summed up to zero. What do you think sir?
@riley4051
@riley4051 4 жыл бұрын
thank you for this proof. I was wondering also as a possible shorter way of doing this, couldn't you just observe that since the ratio between the next term and the term before it is greater than 1, then each term is greater than the one before it. Therefore the sequence must tend to infinity because the terms are increasing. And if you have negative terms by an alternating series, then if the absolute value of the ratio is larger than one, then the sequence still cannot go to zero because each term is increasing in magnitude, so it must diverge. Does this work? Thanks.
@slcmathpc
@slcmathpc 4 жыл бұрын
Yes, if it is true that |a_n+1 / a_n| > 1 eventually, then |a_n+1| > |a_n| eventually. This means that for large enough values of n, the terms of the sequence a_n are increasing in magnitude and so they cannot be approaching zero, which implies that the series of a_n diverges by the Divergence Test. Your intuition is spot on!
@riley4051
@riley4051 4 жыл бұрын
@@slcmathpc thank you
@matildawillcox1693
@matildawillcox1693 4 жыл бұрын
@@slcmathpc Great, thanks both
@kartikeyakatiyar8097
@kartikeyakatiyar8097 2 жыл бұрын
Wonderful explanation
@derickblacido2267
@derickblacido2267 6 жыл бұрын
don´t understand why does the lim_n=>oo f(x) tend to "n", if the maximum value that the lim can take is just k.?
@ladedadedaschlobonmeknob7850
@ladedadedaschlobonmeknob7850 8 жыл бұрын
why did you multiply by L to get L^2 |a(n)|?
@slcmathpc
@slcmathpc 8 жыл бұрын
+Raul G Since |a_N+1| > L |a_N|, it naturally follows that L|a_N+1| > L^2 |a_N|. Applying this idea repeatedly allows us to show that the sequence a_n does not converge to 0 as the terms keep on getting larger, hence the series diverges.
@shivashivarathri2931
@shivashivarathri2931 7 жыл бұрын
hiii sir.. ratio test and alemberts ratio test both are same..? or different
@slcmathpc
@slcmathpc 7 жыл бұрын
Yes, they seem to be the same.
@souritrashee6794
@souritrashee6794 4 жыл бұрын
Thank you sir
The Ratio Test - Proof of Part (b)
13:38
slcmath@pc
Рет қаралды 9 М.
Proof of the Limit Comparison Test
6:36
Linda Green
Рет қаралды 5 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
1% vs 100% #beatbox #tiktok
01:10
BeatboxJCOP
Рет қаралды 67 МЛН
Real Analysis | A convergent sequence is bounded.
11:51
Michael Penn
Рет қаралды 24 М.
Alternating Series Test
19:41
The Organic Chemistry Tutor
Рет қаралды 752 М.
The Root Test - Proof of Part (b)
8:47
slcmath@pc
Рет қаралды 6 М.
Proof of the Ratio Test
9:12
Linda Green
Рет қаралды 8 М.
Choosing Which Convergence Test to Apply to 8 Series
12:13
Dr. Trefor Bazett
Рет қаралды 461 М.
Absolute Convergence Test - Proof
7:37
slcmath@pc
Рет қаралды 12 М.
D'Alembert's Ratio Test - convergent and Divergent Series
13:04
Study Buddy
Рет қаралды 104 М.
Hardy's Integral
13:47
Michael Penn
Рет қаралды 19 М.
The Root Test - Proof of Part (a)
6:23
slcmath@pc
Рет қаралды 11 М.
Ratio test | Series | AP Calculus BC | Khan Academy
8:59
Khan Academy
Рет қаралды 491 М.
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41