This is just amazIng. He can pass the overall concept in 10 minutes better than one can read in books in 1 hour. Conceptual understanding is crucial to guide learning. After understanding what this concept is about and where you are within the topic and how can it be used in practice, its much easier to absort the material and guide the learning by connecting the detailed concepts you learn afterward, by digging deeper. But having this overall knowledge is essential and most books don't give that.
@JulioDiaz6144 жыл бұрын
Thank you Dr. Brunton for your always insightful and inspiring lectures. I may find a way to use this in my research
@Eigensteve4 жыл бұрын
Wonderful!
@Lrexmo4 жыл бұрын
The description is great, the ideas are clear and the logic is coherent. Thanks for your work.
@Eigensteve4 жыл бұрын
Glad it was helpful!
@AllElectronicsChannel4 жыл бұрын
Is the Gabor Transform a special case of a STFT ? What are the tradeoffs of using other windows functions in place of the gaussian?
@bobspianosbffl4 жыл бұрын
I was trying to understand spectrograms recently and finally thanks to this video it clicked! A few clear visuals do a wonder for elucidating the maths and concepts
@vinilsimoes4 жыл бұрын
You never cease to amaze us Dr. Brunton!!! Keep up your magnificent work!!
@geraldheinig1473 Жыл бұрын
Excellent explanation. I'm particularly happy about the mention of how Shazam works: that's something that's intrigued me for a while now. Thank you!
@succirasuccira4 жыл бұрын
Dr. Brunton's concise explanations of all these transform and compression algorithms are first class, and the visual here just incomparable! In this video, on the topic of Shazam's algorithm, you mentioned that it has the caveat that: when the song is stretched in time it makes it harder to match peaks in the power spectrum. This got me thinking about the other dimension: a slightly transposed (pitch shifted) song also breaks the algorithm given the spectrum was measured in fixed frequency. This could be me imagining things but: it might be useful to have spectrum that measures relative frequency. That way you can match songs even if it's transposed to different keys.
@-E42- Жыл бұрын
I like the creativity with the transparent wall between the lecturer and the camera, on the other hand the presentation seems strangely surreal due to the fact the presenter is only visible as floating head/shoulder and arms
@marcogelsomini76552 жыл бұрын
Wow that's awesome! Thank you for introduce it to me Dr. Brunton :)
@davidtolle95334 жыл бұрын
The bit about Shazam using the power spectral density property to accurately identify songs was interesting. Thanks for the content
@neb56154 жыл бұрын
Thanks for all lectures, I really appreciate your explanations
@gamedeeds4 жыл бұрын
teaching tech is beyond this gen keep it up prof, very useful and understanding
@hunters.dicicco14104 жыл бұрын
i wish i had this when i was first learning the math required for signal processing. great stuff!
@zoheirtir4 жыл бұрын
Thanks a lot for your inspiring lectures ! Zoheir TIR Algeria
@spkt10013 жыл бұрын
Best video for understanding the intuition of spectrogram!
@tech01q3 жыл бұрын
If the music is shrinked or stretched, it should still be easy to recognize the music, if the program is adjusted according to the percentages of time intervals between peaks of sound, than a unique pattern can be generated. This has a great potential in the future… Thank you …
@erikgottlieb93622 жыл бұрын
Thank you for clear, concise, organized presentation. Appreciative of how much time and effort such a presentation / explanation takes to create and deliver. Appreciative of the format you use and precision in getting explanation correct. Explanation of terms and where terms originate has always been helpful in your presentations. Thanks again. (Erik Gottlieb)
@lancelotdsouza47052 жыл бұрын
Thanks Dr Brunton ...The Gabor transform was very well explained ,,,,needed the code for the same
@JohnDo-j7z4 жыл бұрын
Please video on Mel spectrogram and why it can't be reversed, thanks for the book and the videos.
@twangist2 жыл бұрын
Thank you Professor Brunton, you're really excellent at this.
@kaxxamhinna5044 Жыл бұрын
Thank you very much 🎉🎉 you saved my weekend 😂 Have a great day
@BruinChang4 жыл бұрын
I like the whole series very much.
@yuep68086 ай бұрын
I can't help but think about how you do inverted writing so well 😂
@brendawilliams8062 Жыл бұрын
I work with number theory. The teacher is powerful.
@RealMcDudu3 жыл бұрын
You're really an amazing teacher! Explained very clearly. Shows you also understand it very well.
@pieterjoubert43464 жыл бұрын
Thank you Dr. Brunton! Clear and concise. Liked and subscribed.
@aalselwi4 жыл бұрын
I am enjoying your trip of learning process
@Eigensteve4 жыл бұрын
I'm so glad!
@sandras26244 жыл бұрын
... i'm just silently wondering why this was in my recommendations; i am a social science major and i spend most of my time here on youtube watching cat videos. oh, the yt-algorithm. however: keep up the good work!
@JohnVKaravitis4 жыл бұрын
SUE KZbin! You've been scarred for life!
@josueprieto73712 жыл бұрын
Beautiful explanation
@ffelixvideos4 жыл бұрын
I would like to know: what are the advantages of this spectrogram over the STFT algorithm or the mel-spectrogram?
@MrKrvo4 жыл бұрын
Mr Brunton said some a little misleading information. Gabor transform was the first time-frequency representation of signals, it is special case of STFT (because STFT (Short-Time Fourier Transform) can have any sliding window, Gabor transformation is done using only Gaussian window; there is also Triangular, Hamming, Hann, Blackmann and many others). Each of them has advantage and disadvantage - e.g. wider first lobe in frequency means suppressed the others and vice versa. It always depends on the use and purpose of the analysis. For audio signals, the most common window is Hann window (it doesn't have so sharp edges, e.g. like triangular, it is made by harmonic function - cosinus, so it is more smooth but its also wider for the first frequency lobe). The most common spectrogram is computed with STFT (Fourier T. in general), not Gabor transform. Mel-spectrogram is little different because it uses "mels" - Mel is a unit from psychoacoustic for a subjective melody; it also uses cosine transform but in short, it is another time-frequency representation of a signal and it tries to simulate or imitate human hearing and musical perception. Mel-spectrum (and kepstrum) is commonly used for research purposes of MIR (Music Information Retrieval) because the signal representation is usually closer to the subjective aspects of human hearing and thus is better for most of the applications (so far).
@ffelixvideos4 жыл бұрын
@@MrKrvo Ok, I got it. Thanks for your time.
@MrKrvo4 жыл бұрын
@@ffelixvideos No problem.
@Eigensteve4 жыл бұрын
Thanks for the great extra information!
@tobi34974 жыл бұрын
@@MrKrvo Thanks for this !
@Anorve9 ай бұрын
I love your videos and explanation
@qilinwang5889 Жыл бұрын
Hi Steve, I can't thank you enough for making these beautiful videos. I have purchased the book as a way to say thank you. The book is beautifully printed, and if I can give you some feedback from a reader's perspective, I would like the book to have a larger font. They are too small to read for a long time. Anywaysl, thank you for your work!
@haowang43063 жыл бұрын
thank you for your lecture. how to make this kind of video in which the drawings can be shown in front of lecturer?
@dragoncurveenthusiast4 жыл бұрын
You are such a good lecturer! Thank you!
@pavelkonovalov89314 жыл бұрын
Thank you so much for your labour. Do you mind to make a video on harmonic distortion?
@Eigensteve4 жыл бұрын
I can't promise I'll make one, but I will add it to the list.
@SRIMANTASANTRA4 жыл бұрын
Hi Professor Steve, Nice.
@Eigensteve4 жыл бұрын
Glad you like it!
@AnilAgiral4 жыл бұрын
This is really neat!
@wesleytaylor-rendal56482 жыл бұрын
How to find the time resolution? Look at the width of the Gabor function?
@mohamadhamoudy82324 жыл бұрын
Thanks a lot Prof. Steve , please could you upload a video for using Spectrogram on sound classifications and feature extraction , regards
@danielnagy63604 жыл бұрын
Awesome videos, really great content and great quality, and also a great topic.
@mohammedal-haddad26524 жыл бұрын
What about the width of the Gaussian function?
@mehdis.74044 жыл бұрын
Excellent quality!
@jushkunjuret43864 жыл бұрын
This is a wonderful lecture!
@miguelfernandesdesousa77843 жыл бұрын
is there any difference between Gabor Transform and STFT? Is it just a particular case with a gaussian window and unitary gain?
@Thejus_55112 жыл бұрын
Great explanation
@neuronneuron36454 жыл бұрын
This is behind the uncertainty principle?
@rodrigomesquita87412 жыл бұрын
Isso é uma das coisas mais lindas da engenharia. Fundamentalmente você vai calcular a transformada de furrier para janelas de tempo específicas, e vai poder ver quais as componentes de frequencia naquele instante!
@nisanaryal1564 жыл бұрын
I really love this video. I am working in audio classification and I have learned the basic about Spectrogram(STFT), Mel scale and mel spectrogram, MFCC, Consant Q transform etc but I still cant figure out which spectral representation should I use at which condition . Apart from the representation there is the selection of window length and the hop length of the window (trade off between temporal and frequency resolution). At the end of these series I would love to see the comparison and your view on these different representations.
@trinetram7074 жыл бұрын
Why do we use Gaussian window can't we use a rectangular window ??
@amruthgadag48132 жыл бұрын
So basically it is the short-time Fourier transform-based spectrograms. Please reply if yes or no.
@ΔΗΜΗΤΡΗΣΟΙΚΟΝΟΜΟΥ-ι8ψ4 жыл бұрын
Thanks a lot for the series of videos. They are very useful for my projects. How about S-transform? Thank you again.
@Eigensteve4 жыл бұрын
Thanks! Maybe I'll make one on the S-transform sometime.
@philipq69064 жыл бұрын
Great explanation can’t wait for the next vid. BTW this is just like a music score. The wave are decomposed by windowed Fournier transformer. I am wondering in real control or identification system, how do we update the realtime signal? We cannot wait a long period and the windows g(x) size also matters. How do we choose a appropriate length
@Eigensteve4 жыл бұрын
You are right -- and yes, in control applications, the spectrogram will be computed continuously with a sliding window.
@GabrieleNunnari4 жыл бұрын
This videos have an incredible quality, really. Content and graphical. My only real question is: how are you able to explain and write mirrored making it look so natural!!!
@evanritchie61954 жыл бұрын
You can record the video with backwards writing, then mirror the video in an editor afterwards. :)
@jm34154 жыл бұрын
what are the HUP implications on time and freq uncertainty for the Gabor Transform?
@abhishek_sengupta4 жыл бұрын
Very nicely explained!! Thanks!
@trinetram7074 жыл бұрын
Doesn't a Gaussian window alter the frequency content of the signal ??
@banggiangle82583 жыл бұрын
best explanation ever!
@Eigensteve3 жыл бұрын
Wow, thanks!
@shashidharmuniswamy26203 жыл бұрын
How do I locate the fundamental frequency at that particular instant? and what do I do to find the ratio of the harmonics to the fundamental frequency as it evolves with time? :)
@trinetram7074 жыл бұрын
Great video sir please keep posting such videos
@udomatthiasdrums53223 жыл бұрын
love your work!!
@Space-Audio4 жыл бұрын
I have a few out-of-this-world examples of spectrograms you just might be interested in.
@zhihuachen36134 жыл бұрын
like your video, especially programming in both python and Matlab
@Eigensteve4 жыл бұрын
Glad you liked it!
@Kong99014 жыл бұрын
So the spectrogram just shows the frequency played at each time, but there is no information about the amplitude of these frequencies ?
@Kong99014 жыл бұрын
I got my answer from the next video. Thank you :)
@abdellahsellam9124 жыл бұрын
Thanks, this video was very helpful for me
@udayanbanerjee52714 жыл бұрын
Dear sir Is W vs t a continuous function? Can we identify the nature of the change in frequency and then invert it back to get that part of 'f'?
@bhaveshamarsingh16564 жыл бұрын
Hello Steven sir, I have gone through wavelet transforms back in the day and i wanted to ask that is it not similar in the sense that they too have evolved/developed because Fourier Transform fails to specify the time at which certain frequency occurred in the original signal. And moreover, please do bring up a short video lecture series on wavelet transforms as well. Thank you.
@Yang-YTchannel3 жыл бұрын
Super good explanation!! May I know how do we get the power information if the y-axis is frequency and x-axis is time? Like how large the signal is for each frequency at an instant time?
@JohnVKaravitis4 жыл бұрын
Zsa Zsa or Eva Gabor?
@numoru Жыл бұрын
i know its late but we ahould definitly have two, since left and right channels/phases can be different . would be a good extension. yYet, even more so 3d phases allow for darn near infinite phases so would lobe a transform that splits that u0 based on color and intensity to see the intricacies. I mean if were not talking polyphonic it should be possible, monophonic yeah . but honestly I dont get why its a problem for multiple phases and poly phonic if we take each initiation of intonation as a phase of a fractional phases that doesn't multiple/algorithmically interact with/ into the greater whole/nor parts (if given the total data first). Further, this is based off of first principle in the idea that we can generate moire patterns even with aperiodic data (Glass patterns) easily yet it is the microstructures (local) that we aren't able to inversely appropriate/segment, yet if the phase data is there we should be able to,..-wrong?
@numoru Жыл бұрын
typos will not be dealt with, it to much to read. so guess
@danielparra69024 жыл бұрын
Thank you very much for the clear intuitive explanations Dr. Brunton. I was wondering if there is a Gabor transform analog that uses a data driven approach like the SVD? In the case of SVD would the power spectrum change along with the basis or should one compute the basis with the whole signal and only then with a fixed basis apply the transform?
@arnabprophet2 жыл бұрын
Did anyone else realize that Dr. Brunton is writing backwards on a screen?
@StefanT413 жыл бұрын
Wow ! Thanks a lot!
@rolandstefan52044 жыл бұрын
Fun fact: Gabor transform was named after by Gábor Dénes who was a hungarian physicist and electrical engineer and he also got the Phsics Nobel Prize for inventing holography. Sorry for the grammatical mistakes.
@carlossama21914 жыл бұрын
This is sweeet! How can this be applied to voice recognition? Go dawgs!
@Eigensteve4 жыл бұрын
I think so. Modern voice recognition uses recurrent neural networks, but the spectrogram can be very useful here too.
@yousifyahiaahmed82064 жыл бұрын
Thanks so much indeed
@Jo-ce6gd3 жыл бұрын
Perfect! thanks
@treksis2 жыл бұрын
@6:45 low 22222 high~~~😁😁😁
@NaveenKumar-gs8xn3 жыл бұрын
Thanks a lot ...
@Via.Dolorosa4 жыл бұрын
thank you
@aefieefnvhas3 жыл бұрын
Amazing
@AbhilashIngale3 жыл бұрын
Pleased to meet you, the Real Men and Women of culture ;)
@melihozcan86762 жыл бұрын
@11:50 I miss the times when KZbin had dislikes, and we had a chance to avoid the garbage...
@aliadams5164 жыл бұрын
Wonderful :)
@Eigensteve4 жыл бұрын
Thank you! Cheers!
@Henderburn22 ай бұрын
Wait has he been writing backwards the whole time
@v8pilot3 жыл бұрын
Did you mention the Gabor transform? I must have dozed off if you did. I've been re-reading his paper and want to understand its relation to the spectrogram.
@Ting36244 жыл бұрын
so one can technically write an algorithm to listen to music and generate sheet music.... holy there are plenty after google it
@Eigensteve4 жыл бұрын
This is indeed one of the big open challenges that people are working on. Can you imagine if researchers could create an algorithm that would generate new Vivaldi?
@leif10754 жыл бұрын
@@Eigensteve what exactly is the open challenge? If you can write an algorithm to write mew music from scratch? But it would probsbly just be random stitching together of notes from existing pieces wouldn't it?
@kelvinxie10292 жыл бұрын
Music sheets are spectrograms from Gabor transformation LOL