I think this is one of those videos that will really keep you up rather than making you want to go to sleep. It's not boring. And the explanations are so lit.
@BackToBackSWE4 жыл бұрын
thanks!
@dontfollowme40572 жыл бұрын
You're lit.
@umbraemilitos2 жыл бұрын
@@BackToBackSWE Your channel is excellent. Thank you for your educational content.
@JasonOgasian4 жыл бұрын
The way the camera moves and the speaker is acting makes it feel like someone is about to bust in and erase all his whiteboards at any moment 😂 Great video!
@BackToBackSWE4 жыл бұрын
Hahahaha that was the case. 2nd video I ever did
@naskavian70414 жыл бұрын
This is the Blair Witch Project of Big O :)
@BackToBackSWE6 жыл бұрын
Table Of Contents: (I want to redo this video, the video is overexposed in lighting) Messing Around 0:00 - 0:17 Big O Introduction 0:17 - 0:43 O(n^2 )Bounding Example 0:43 - 1:33 Upper Bounding 1:33 - 1:51 The O(n) Mistake 1:51 - 2:38 Notating min() & max() 2:38 - 2:56 O(1) "Constant time" 3:07 - 3:46 O(log(n)) 3:46 - 5:43 O(n) "Linear time" 5:43 - 6:30 O(n * log(n)) 6:32 - 8:09 O(n^2) 8:09 - 9:09 O(2^n) "Exponential time" 9:09 - 9:40 O(n!) "n-factorial" 9:40 - 10:55 Considering Tradeoffs 11:01 - 11:34 Why To Optimize Time 11:34 - 11:58 Space Complexity 12:02 - 14:38 DO. NOT. GUESS. 14:44 - 15:40 Leveraging Our Complexities 15:40 - 16:30 Wrap Up 16:30 - 16:59 HUGE IDEA. Time complexity must be at least the space complexity. If you deduce a complexity and this does not happen then something is wrong. This is because to use space we must use time (space is tightly bound to the time that it takes to use it). Due to this relationship, space ALWAYS has at least a loose lower bound on time if not very close. I will make a part 2 to this video to expand with nuances like this in complexity theory.
@igo10716 жыл бұрын
Back To Back SWE excellent explanation God bless🙏🏼
@BackToBackSWE5 жыл бұрын
thanks
@bakor-org5 жыл бұрын
Simply the best explanation on the whole internet. I really like how he points out what he has done wrong in the past so we don't do the same. Thank you. :)
@BackToBackSWE5 жыл бұрын
thanks - he is here
@victorariasvanegas74074 жыл бұрын
This is the kind of video by which people like me, who are introducing to this world, will buy access to your platform, never stop making them, excellent explanation bro, I finally understood this concept.
@BackToBackSWE4 жыл бұрын
haha, well nice
@andrewgray31123 жыл бұрын
THE BEST, CLEAREST BIG-O VIDEO BREAKDOWN YOU WILL FIND ON KZbin!!! Thank you so much for making this, it has really helped me understand things better!
@TimothySusanto5 жыл бұрын
Finally an introduction to Big O that actually makes sense!! Thank you.
@BackToBackSWE5 жыл бұрын
sure
@ReBufff3 жыл бұрын
Out of the ones I checked out, this actually explains WHAT the concept is before jumping into some arbitrary code. Thanks!
@BackToBackSWE3 жыл бұрын
Glad to hear that
@BackToBackSWE2 жыл бұрын
Subscribe to our DSA course with a flat 30% discount for some amazing content b2bswe.co/3HhvIlV
@jorossbarredo5 жыл бұрын
Dude, this video introduction to Big O is what I needed! Blessing from the gods!
@BackToBackSWE5 жыл бұрын
nice
@brAzzi645 жыл бұрын
Never seen that many whiteboards before.
@BackToBackSWE5 жыл бұрын
yeah
@joacortez34233 жыл бұрын
This video is one of the most complete and engaging i have seen
@MTKClassy2 жыл бұрын
From the bottom of my heart, thank you so much for the gold knowledge
@BackToBackSWE2 жыл бұрын
Thank you, glad you liked it 😀 Do check out backtobackswe.com/platform/content and please recommend us to your family and friends 😀
@lien-chinwei48155 жыл бұрын
Thank you for the first 11 min presenting solid examples related to each big Oh. Fantastic work.
@BackToBackSWE5 жыл бұрын
hey
@kainguyen42594 жыл бұрын
Wow bro you really kill the n * log (n) part. Thank you!
@BackToBackSWE4 жыл бұрын
sure
@MrJaddamo5 жыл бұрын
Ben, you are the MAN. I wish I could attend a Bootcamp taught entirely by you. I go to Columbia and it's extremely difficult to keep up with the speed at which the curriculum is taught. Your videos really help create a baseline of understanding.
@BackToBackSWE5 жыл бұрын
haha, I am but a man, a lot of videos left to make
@user-gp8fr1nd3w5 жыл бұрын
oh my god same I got to Columbia now. Were you doing data structures?
@dizhang31575 жыл бұрын
thank you soooo much!!! seeing you so passionately talking about this encourages me to learn more about it. great great work
@BackToBackSWE5 жыл бұрын
haha nice
@zihangjin91863 жыл бұрын
Thank you! It helps me (a beginner) get a brief understanding of all those concepts in such an easy way.
@georgesmith91784 жыл бұрын
Thanks for the tutorial - thumbs-up given. The most important comment you made was toward the end of the video: it is impressive to state the space-time complexity. For interviews, it always helps to create an air of authority, regardless of how practical it would be to write production code that relies on the what you are being tested, which in all likelihood you never will :)
@BackToBackSWE4 жыл бұрын
thx
@syedrizvi26873 жыл бұрын
Love your energy bro! Thank you for your great explanations to so many concepts
@muhammadfaisalhyder40124 жыл бұрын
To be honest, this is by far the best one! now please make a vid where you go through actual code, I am talking about actual code, not some rubbish nested for loops just to print the name or number. That will help in practically applying these concepts.
@BackToBackSWE4 жыл бұрын
ok
@tathagatnegi59234 жыл бұрын
Great video❣️ Helped me alot I have watched many videos on big O notation but no1 has ever explained it in this easy and simple manner Great job sir👍❣️
@BackToBackSWE4 жыл бұрын
great and thanks
@pavithravenkatesan72165 жыл бұрын
Very simple to understand. The teaching method is unique and efficient :) Thanks a lot for doing this :)
@BackToBackSWE5 жыл бұрын
sure
@lazymacs28234 жыл бұрын
Nerd: "you can't buy time" RTX3090: allow me to introduce myself
@BackToBackSWE4 жыл бұрын
lmaooo
@azuboof Жыл бұрын
What an amazing lad. Hope he reaches heights. thanks for the clear explanation
@BackToBackSWE Жыл бұрын
Thank you, appreciate it 😄 Also check out our Free 5 Day DSA Interview Prep Mini-Course - backtobackswe.com/ 🎉
@anuchechi99175 жыл бұрын
wow! It is the ultimate Big O notation tutorial. Awesome work, please keep doing the same. Thanks a lot.
@BackToBackSWE5 жыл бұрын
thx
@Ashmole32 жыл бұрын
Your videos have been really helpful to me and it seems like some of the things that trip me up sometimes also tripped you up as well.
@VictorGarcia-si8wy2 жыл бұрын
"We can buy memory, but we can't buy more time." That's some deep stuff right there.
@gauravbhisikar63815 жыл бұрын
Thanks you My all doubt about algorithmic complexity is now cleared🙂
@BackToBackSWE5 жыл бұрын
nice
@rohantohaan86844 жыл бұрын
Prepping for Fall hiring season. Botta watch/learn from your videos
@BackToBackSWE4 жыл бұрын
great. welcome to the party.
@044_karan84 жыл бұрын
This is the best video on big Oh.. I also like ur style bro
@BackToBackSWE4 жыл бұрын
thanks
@alpavaidya4124 жыл бұрын
Very good explanation...unlike other videos I can relate to ur teaching cause u stress on the points which u urself found difficult to understand
@BackToBackSWE4 жыл бұрын
thanks and great
@sbv52204 жыл бұрын
I am glad you didnt use a potato to record this, instead you opted for a bowl of jello. I was dizzy at times, but overall. Great content!
@soverby54 жыл бұрын
I just love these videos, the presentation style really resonates with me. Great job.
@BackToBackSWE4 жыл бұрын
thx
@noahpineda34195 жыл бұрын
I love this channel. I wish I could like videos multiple times haha.
@BackToBackSWE5 жыл бұрын
haha nice
@SumitSahoo5 жыл бұрын
Simplest explanation of Big O period.
@BackToBackSWE5 жыл бұрын
hello
@SumitSahoo5 жыл бұрын
@@BackToBackSWE hello world :)
@Elidangerfield11115 жыл бұрын
My god im so glad I found this channel.
@BackToBackSWE5 жыл бұрын
hey - ben
@rtr0spct21010 ай бұрын
5:59 really helped things click for me, thanks!
@srikarvoleti89504 жыл бұрын
Clear and precise. If I get an A on my final tomorrow, I'll dedicate it to you.
@BackToBackSWE4 жыл бұрын
ok
@moddatrucka5 жыл бұрын
Good Explanation! A camera tripod would have helped though :)
@BackToBackSWE5 жыл бұрын
this was my second video ever jeez guys
@123Azns6 жыл бұрын
amazing!!! Better than stackoverflow, and professors that taught me.
@BackToBackSWE6 жыл бұрын
haha, I'm working on redoing this video. It is badly exposed.
@123Azns6 жыл бұрын
Back To Back SWE hahah could you give more examples in the new vid?
@BackToBackSWE6 жыл бұрын
@@123Azns yeah. it will be amazing.
@AlphaZeroOmega5 жыл бұрын
Studying the behavior and complexity of algorithm can be super confusing, especially considering mathematics is involved and not all developers are well schooled beyond basic algebra. This is a pretty good introduction in my opinion, to get your head around the basics.
@BackToBackSWE5 жыл бұрын
thx, old video tho
@AlphaZeroOmega5 жыл бұрын
@@BackToBackSWE Hey, at least the info is still good.
@Series0Tubes4 жыл бұрын
Again, I love these videos. Thank you very much!
@BackToBackSWE4 жыл бұрын
Sure!
@peejaylero34674 жыл бұрын
So very proud of this video. I love it! I was just thinking today after about 6 years of higher education in the US (undergrad and grad), I've never had a black lecturer/instructor. Never! Not even outside of my CS classes. Thank you for this :)
@stpetar2134 жыл бұрын
Great explanation! Thank you.
@BackToBackSWE4 жыл бұрын
sure
@shanthanreddy25244 жыл бұрын
could u make another video with a detailed explanation for the space complexity ? Thanks, Sai
@BackToBackSWE4 жыл бұрын
yes
@allierobinson99144 жыл бұрын
Thanks for making this interesting presentation! I love your energy!
@BackToBackSWE4 жыл бұрын
sure and thanks!
@ibrahimk67294 жыл бұрын
Great video, interview bytes at last on (15:43) was really impressive..
@jknair03 жыл бұрын
I just felt like i watched video at 2x speed. so much useful content in so less time.
@xiuwenzhong73755 жыл бұрын
very good explanation, watch your video everyday on my train to office is my habits now.
@BackToBackSWE5 жыл бұрын
wow, that is so cool, I'm flattered
@rahil_rehan5 жыл бұрын
In O(n) complexity, when it is 3*n the linear graph line doesn't become sterper but shifts up 3 units. Great explanation!
@BackToBackSWE5 жыл бұрын
What? Can you timestamp it? Multiplication by a constant factor makes a line steeper. Shifting up is addition.
@rahil_rehan5 жыл бұрын
@@BackToBackSWE Yeah! Sorry, I was just confused between multiplication and addition on functions. You again made it clear. Thanks alot!
@simoneckerstorfer41744 жыл бұрын
Thanks for this video!
@BackToBackSWE4 жыл бұрын
sure!
@rogersteele28355 жыл бұрын
Great video it really clarifies Big O in relation to the search types
@BackToBackSWE5 жыл бұрын
ye
@abigailgonzalez78574 жыл бұрын
This is the best explanation! thank you so much!
@BackToBackSWE4 жыл бұрын
sure
@angeloliwanag26194 жыл бұрын
This video is GOATED
@BackToBackSWE4 жыл бұрын
yes
@stannikolov2 жыл бұрын
Watching this was fun. Thank you!
@BackToBackSWE2 жыл бұрын
Thank You, Glad you liked it. Do check out backtobackswe.com/platform/content and please recommend us to your family and friends :)
@emekatimothyiloba69911 ай бұрын
Thanks. You are a great teacher
@ramizrizwan30572 жыл бұрын
Such a great and helpful video. You explained this sos well
@powerhouse54243 жыл бұрын
Thanks for saving my life!
@mahakshmalhotra76344 жыл бұрын
Amazing explanation!! great job!!
@BackToBackSWE4 жыл бұрын
thanks
@Mona19_054 жыл бұрын
the best explanation of big O thanks! camera wasn't stable enough :/
@BackToBackSWE4 жыл бұрын
ik, 2nd video we ever made
@DanielSColao4 жыл бұрын
Thanks for uploading videos like this!
@AshishSingh-7535 жыл бұрын
Hey your are best content creator
@BackToBackSWE5 жыл бұрын
no u
@rahulpadalkar62373 жыл бұрын
Is the triangular work @ 8:45 a graph of number of comparisons (y) vs index (x) ? That's how you would get a triangle imo. Also from what i know about work (from physics) work is calculates as the area under the graph. Since it is a right angle triangle, we can calculate the area as 1/2 * base * height which equals n^2/2 which then gives us the complexity of n^2.
@BodySnatchers-v5f Жыл бұрын
A tripod is a portable three-legged frame or stand used as a platform for supporting the weight and maintaining the stability of some other object. In photography, a tripod is used to support, stabilize and elevate a camera, a flash unit, or other photographic equipment. Tripods are available in various sizes and materials and can be purchased from many retailers such as Amazon and Best Buy.
@kushalchawla4395 Жыл бұрын
🤣exactly my feeling right now while suffering from a headache after watching this.
@BugattiVeyron15 жыл бұрын
Subscribed you did a good job explaining the material thanks
@BackToBackSWE5 жыл бұрын
yuh, welcome
@trmnatr215 жыл бұрын
Holy shit. It makes sense. Didn’t expect that. Thanks lol.
@BackToBackSWE5 жыл бұрын
nice
@DataVids4 жыл бұрын
very helpful thanks for making this video.
@BackToBackSWE4 жыл бұрын
sure thanks for watching
@leo716483 жыл бұрын
It forms what it look like a triangle--> Didn't understand this point for O(n2), how it formed a triangle?
@meyringvanderwalt725 жыл бұрын
Love this guy! Keep it up!
@BackToBackSWE5 жыл бұрын
ur name is cool
@MAliRamazani Жыл бұрын
Very good! I just wish the video footage wasn't shaky!
@BackToBackSWE Жыл бұрын
Glad it was helpful and sorry about the footage! 😄 Also check out our FREE DSA Interview Prep Mini-Course - backtobackswe.com/ 🎉
@momenaboessa4 жыл бұрын
That was AWESOME ✌🏻👨💻🔥🔥🔥🔥
@HN-if9qt4 жыл бұрын
At 8:34, how did you go from 3 comparisons of an array to form a triangle?
@BackToBackSWE4 жыл бұрын
I dont remember
@gvartchanel1445 жыл бұрын
Great explanation, thank you
@BackToBackSWE5 жыл бұрын
sure
@abdullahclementabdulshekur67362 жыл бұрын
very clear and on point
@BackToBackSWE2 жыл бұрын
Happy Holidays! Really glad to help 🎉 Do you know about the BacktoBackSWE 5 Day Free Mini Course? Check it out here - backtobackswe.com/
@bluejprogramming1844 жыл бұрын
Sir, can we say O(log(n)) means "half of n or half of the common runtime" of the algorithm? So, if anyone asks that what is O(n*log(n)), we can say its O(n*(n*1/2)) which is O(1/2*n^2) and drop the constant which becomes O(n^2)?? Means O(n*log(n)) = O(n^2)???
@gianm10642 жыл бұрын
Amazing content!
@yashwanthnerella99355 жыл бұрын
The clarity!
@BackToBackSWE5 жыл бұрын
thanks
@올롱볼롱4 жыл бұрын
do you have any book recommendation to study this subject?
@BackToBackSWE4 жыл бұрын
Just the internet
@thesickbeat4 жыл бұрын
Try "Data structures and problem solving using Java" by Mark Allen Weiss. The concepts transfer to other languages too.
@leonelhernandez60275 жыл бұрын
Hi mate, have you seen the Berlekamp-Massey algorithm? The time complexity is defined as O(n^2), where n is the input data. Can I asume the same space complexity?
@BackToBackSWE5 жыл бұрын
No I haven't :/
@leonelhernandez60275 жыл бұрын
No worries. I was doing this analysis and basically the time complexity can be calculated according to biggest tasks involved, where n^2 steps are taken. When calculating the space complexity is a different story because, I was mainly considered the vectors that I used, in my case 4.
@kidpesto2 жыл бұрын
This man doesn't use dots for bullet points he uses transmutation circles
@ahmedboutaraa87714 жыл бұрын
i never thought that big O is so easy till now
@BackToBackSWE4 жыл бұрын
ye
@SaiKumar-vo2ek3 жыл бұрын
which language is best for DS&A? Please respond to my question
@ahmedboutaraa87713 жыл бұрын
@@SaiKumar-vo2ek I think it depends on your goal, if you want to get into competitive programming then C++ might be a good option. otherwise use a high-level language like python, ruby, or javascript where you don't have to worry about the lengthy syntax, and implement your own DS on top the existing one. NOTE: I'm not an expert so take with a grain of salt and do your own research.
@jonasmaoh13712 жыл бұрын
Doesnt that make nlogn then 8 times 3 making it 24 as complexity????
@user-vq6yi7se2r3 жыл бұрын
Great one!!!!!!!!!
@derreck34245 жыл бұрын
Very low production quality, but high quality content. Thank you :)
@BackToBackSWE5 жыл бұрын
hahahahaha, you found my 2nd video ever
@EllAntares4 жыл бұрын
I dunno, there is nothing better than white\blackboard explanation XD
@jerrywu57976 жыл бұрын
Talking about time complexity, it's great to watch your video and do some further study on it because it's almost a basic skill during interviews. At least from my previous interview experience, both facebook and bloomberg interviewers were willing to know if I could accurately state time & space complexity. Highly recommend Cracking the Code Interview Chapter VI. Big O, where you would deeply understand the practical ways of solving this issue. The answer here clearly explained how we should calculate time complexity for the recursion calls: stackoverflow.com/questions/43298938/space-complexity-of-recursive-function
@BackToBackSWE6 жыл бұрын
Nice, thank you for sharing.
@nolan4125 жыл бұрын
new WhizBangArray(n) # picks the best container type for n
@nolan4125 жыл бұрын
"They don't OOP!?"
@nolan4125 жыл бұрын
Come on lazy iterator! 😜
@nolan4125 жыл бұрын
I got the job!
@mareshbm27314 жыл бұрын
thanks a lot brother.......n im your new subscriber!
@BackToBackSWE4 жыл бұрын
welcome
@ericfricke45124 жыл бұрын
I like this dude.
@BackToBackSWE4 жыл бұрын
I like u
@mistermomo29044 жыл бұрын
8:08 woah woah... no need to get personal
@BackToBackSWE4 жыл бұрын
old video - sorry if I said something weird
@mistermomo29044 жыл бұрын
@@BackToBackSWE lmao no u just said an O notation of n^2 was innefficient i cant do better >:
@ben174495 жыл бұрын
Insertion Sort is O(n) I believe not O(n^2) could have just heard it wrong though
@BackToBackSWE5 жыл бұрын
wut
@vinodphalke21212 жыл бұрын
Awesome teaching & white board also
@BackToBackSWE2 жыл бұрын
Thank you, glad you liked it 😀 Do check out backtobackswe.com/platform/content and please recommend us to your family and friends 😀
@yizhangchen74095 жыл бұрын
Thank you!
@BackToBackSWE5 жыл бұрын
sure
@KyzylMartan5 жыл бұрын
Cool! Great job, thank you!
@BackToBackSWE5 жыл бұрын
sure
@jwilliams82105 жыл бұрын
Nice job!
@BackToBackSWE5 жыл бұрын
thanks
@mdrsoooow3 жыл бұрын
dude i love you
@marlhex62803 жыл бұрын
Bruh I need more practice on this! What can I do?
@bhishma620 Жыл бұрын
Subscribed ❣️✨
@cocoarecords5 жыл бұрын
revisiting thanks !!
@BackToBackSWE5 жыл бұрын
nice
@aiinque5 жыл бұрын
thanks a lot!!!♥
@BackToBackSWE5 жыл бұрын
sure
@ythalorossy5 жыл бұрын
Thanks for share it
@BackToBackSWE5 жыл бұрын
thanks
@bmack75363 жыл бұрын
This is my question besides all this, plain English plain Math. int x = 3; right? O.K. what "operators" create more complexity? Do 2 operators on 1 line square the time? Each variable has a size in memory, int, char, float. so in PEMDAS notation per operator what creates complexity? I think I will make my own channel. thanks anyway for the try.