Why can't my university prof just put up these videos and call it a day. That way I won't be binge-watching these videos the day before the test
@ConceptualCalculus4 жыл бұрын
You do know how to find them. Nothing is stopping you from watching them earlier than the day before the test.
@yugagalaxa984 жыл бұрын
Y'all are studying this in uni?
@chenchoon87514 жыл бұрын
@@yugagalaxa98 Yeah!
@chenchoon87514 жыл бұрын
@@ConceptualCalculus Woah man you might have a point! Thanks for pointing that out idk what I'd do without you!
@yugagalaxa984 жыл бұрын
@@chenchoon8751 oh. We study it in 11th grade...
@81brassglass794 жыл бұрын
Hey professor Dave! you are my hero and I would love to be as cool as you someday. It tickles me the way you combat flat eathers while also helping me learn the material my engineering professors can not. You have made my school life much better since i have stumbled upon your videos and i can not thank you enough. Please keep up what you are doing and know that you are a more than a professor you are a HERO!
@seidahmed15803 жыл бұрын
I would completely agree....i feel my highschool year has been easier since i found u❤️
@andreamalaver61552 жыл бұрын
this man is single handedly saving my engineering career 😭
@ren-cf2fq8 ай бұрын
us 😭
@Sam-em9zy5 ай бұрын
Omg samee here 😭🥲
@iocallisto695 ай бұрын
@@Sam-em9zy im not a uni student, but the way everyone in these comments sections describe uni, Im cooked
@andiswamanqele7943 ай бұрын
Him and The Chemistry Tutor guy🔥
@youcefkartobi3436Ай бұрын
same bro😂😂
@nhaz6522 жыл бұрын
Hello. I have a qn on Vector Cross Product. 1) Is there a reason why we have to subtract first followed by adding the next vector? 2) Is there an order as to whether or not I should take -5 x 3 first, and then 7 x 4? 3) May I confirm that in each of the vector after solving its multiplication, I have to subtract it? For example, (-5x3) - (7x4)
@carultch2 жыл бұрын
Multiplication of ordinary numbers is commutative, but this is not the case for the cross product. For the cross product, a cross b is not the same thing as b cross a, because a cross b is the negative of b cross a. You can multiply the individual numbers in any order you want, that carry out the cross product. But to set up the multiplication, you need to keep the vectors in the correct order.
@C_H_R_O_L_L_O2 ай бұрын
1) yes firstly we took + sign because of the position of that i cap i.e; a11 (1+1=2)(even) so positive then j cap belongs to a12 (1+2=3)(odd) so negative and so on... 2)That's the way of doing determinants 3)that's the whole way of solving determinants
@kironblackwood30044 жыл бұрын
I've come across your videos just recently and am so happy I did; thank you SO MUCH for you crystal clear understanding of these concepts!!
@danieljulian46765 ай бұрын
Cross product: (1) Only in 3D space (2) the value of a determinant is defined to be a scalar quantity, not a vector; the rubric for the cross product is only a mnemonic. Do not study only with this channel unless you wish to treat it simply as prep for exams that will include only very rudimentary "calculate this and give us a number" exercises. In other words, you're not learning linear algebra from Professor Dave in any depth. It's quick, thorough prep for next day's exam if you're only asked to calculate.
@merry37552 жыл бұрын
Mate, thank you so much for these videos, I wouldn't have been able to pass my midterms without you.
@kaomaphiri77493 жыл бұрын
3 years later I'm watching this and it still explains it so easily. Keep it up 😊😊😊😊
@rajyalaxmik66904 жыл бұрын
My Sir explained this topic many times but I couldn't relate, when prof. explained understood very clearly ...Thanks...
@junaidfazlani04 Жыл бұрын
I had been struggling for several months with cross products. I never thought your explanation could help me clear the topics smoothly! Thank you so much professor dave
@anpanmanhope39773 жыл бұрын
You're a life saver Professor Dave !
@sukritbera52444 жыл бұрын
Thanks prof, I passed the physics paper with ur help.....ur tutorials are awesome
@sachindhakal27163 жыл бұрын
i just want to learn vector cross product to find area of triangle but as i opened your channel i found ocean of knowledge .omg im shocked...thnak you so much prof deck from this learner from nepal
@cherinhalechantry87864 жыл бұрын
Very clearly explained! Thank you Professor Dave!
@lingwaili12032 жыл бұрын
Thank you, professor Dave! English is not my mother tongue but I understand Linear Algebra better than I am learning in my university
@gka_renacaАй бұрын
I used to watch him as I studied for ap's now I watch him at Stanford. thank you goat
@sirtristram829729 күн бұрын
Resolve b into two perpendicular components, one parallel to a, and one perpendicular to a; then: magnitude of cross product = [magnitude of a] X [magnitude of the component of b which is at right angles to a (which is "b sin theta") ]
@memeingthroughenglish7221 Жыл бұрын
You're currently my favorite math KZbinr!
@Saisenpai9913 жыл бұрын
Thank you so much sir your explainations are superb and works like a one shot before exams.... By the way, love from India ❤️
@Pang-z5i2 жыл бұрын
professor Dave is just the best. Now are understand more about the topic
@zacharineemi6 жыл бұрын
Nice tutorials. It helps me alot.
@TheZMasterful6 жыл бұрын
@@RajKapoor-ix4mk sum indian ned pusi
@laithdarras638910 ай бұрын
Make sure you put the arrow above to indicate that it's a vector!
@seemasatheesh64245 ай бұрын
This man is saving LIVES 🙌🏻
@kanivakil1984 жыл бұрын
2:23 right-hand rule
@skm22 жыл бұрын
i such love the introduction of this channel it is so shiny
@SeriousStudent6032 күн бұрын
2:00 vector : CROSS product (vector. like finding determinants) . not DOT product (scalar). 2:55 direction of cross product. a x a = 0. 4:00 magnitude / length of vector. parallel vector cross product = 0. 4:15 4:40 . 5:25 cross product only follows distributive property.
@varshinilolla30903 жыл бұрын
Thanks for the video! In comprehension, a×b= -3i + 19j + 10k So, |a×b| = √(-3)^2 i + (19)^2 j + (10)^2 k = √470 Is √470 = |a| |b| sin⊙ ?
@small_ed3 жыл бұрын
Excellent presentation with explanations that get right to the point.
@kungfupanda54912 жыл бұрын
PROFESSOR YOU ARE TRULY THE BEST. LOVE YOU, FROM KENYA
@ConceptualCalculus4 жыл бұрын
Hi Dave. I love your videos. Since we all went online abruptly, I have been using them a lot in my classes. Thank you.
@TrendCast3142 жыл бұрын
Thank you professor dave, I hope i pass my exam later. You are very helpful!!
@Melpomenex2 жыл бұрын
did you pass?
@arvindpawar92433 жыл бұрын
because of ur teaching i got excellent marks in this chapter thank you sir thank u very much......
@alusandrea1501 Жыл бұрын
This is way easier to understand than memorizing a formula.
@AbdouMessaoudАй бұрын
You are the best in the mond bro
@sylabelleambourouet1151 Жыл бұрын
Wow🎉🎉 I really love your way to explains, it's so easy to understand clearly. Thank you so much
@wesselbeer8041 Жыл бұрын
i have an exam tomorrow. this is a great crash course
@blenderup6223 Жыл бұрын
I have mine tomorrow as well
@bernab5 жыл бұрын
Why a x b as a result is 19 j positive? I think is -19j
@giacomodoppiazeta80695 жыл бұрын
The second coordinate (j) is the negative of the multiplication. Basically, once you have your result, you just negate the second coordinate. Check 03:22
@MrChesemis3 ай бұрын
I LOVE EDUCATION KZbin THANK YOU SO MUCH PROFESSOR DAVE, YOU ARE A STEPPING STONE TO MY CAREER AS AN AEROSPACE ENGINEER. Sorry I really love science.
@louismiranda28507 ай бұрын
Could you do a playlist on dynamics?
@ProfessorDaveExplains7 ай бұрын
check my classical physics playlist
@Ligtaau-xj3oc2 ай бұрын
you always make me feel physics is easy
@meera75723 жыл бұрын
dude u are greatt you are freaking great i wish indian schools would have teachers like you!!!
@rslitman2 жыл бұрын
Why isn't the Vector Dot Product video not in the Linear Algebra playlist?
@LA-cm9uo2 жыл бұрын
I learned more from this video than what I learned during my entire degree
@XOR-lith4 жыл бұрын
Came for the flat earth wreckage, stayed for my Master's degree.
@carultch3 жыл бұрын
Well I guess that's one advantage of flat Earthers existing. Getting you introduced to people like Dave to help you earn your degree.
@SantoshKumar-ie5nm3 жыл бұрын
Thanks sir ur vedios are short and very helpful🙂🙂🙂
@yaluman.3 жыл бұрын
Thanks man I have exam tomorrow and I understand it
@adarshthorat71793 жыл бұрын
Thank you sir☺️☺️ Love from India🇮🇳🇮🇳♥️
@hitler-chanofficial84833 жыл бұрын
Bobs and vegan (ʘᴗʘ✿)
@spidystrac62183 жыл бұрын
I am from India.... State :telangana
@sarahelana5355 ай бұрын
Is the cross product a resulting vector? Or is that term only used when adding vectors?
@lilsatsworld88784 жыл бұрын
Great sir, i understood concept very well . Thanks for being there sir
@rendagostino675 Жыл бұрын
saving me at 1am the night before my mid semester
@sitasiktapurohit14474 жыл бұрын
Thank god i got this video... thank you sir....
@muhammedbayram46244 жыл бұрын
Very clear,thank you.
@SyntaxxedАй бұрын
at 5:37 are a,b and c all vectors (in the distributive property)?
@LifeLise8 күн бұрын
Yes.. parentheses first, so if you add vectors b and c the result is one vector (b+c), therefore you can find the cross product between the two vectors a and (b+c)😊
@almahdiabdulkarem17354 жыл бұрын
U r the best professor Dave, thanks
@gabygaray73042 жыл бұрын
Do you have a video like this for addition with the same amount set of numbers?
@shendhaneravi66362 жыл бұрын
at 6:00 *a x b* is (27 i + 19 j + 10 k) and not (-3 i + 19 j + 10 k)
@Waltu02 жыл бұрын
When I included the negatives : (-12-15)i-(24-(-5))j+12-(-2))k , I got -27i-19j+14k.
@lukendorf51111 ай бұрын
Great explanation, thank you!
@DeepeshSachan7 ай бұрын
So any advices for electrostats ?😅
@jaswanthreddy-jk1bq Жыл бұрын
it's such a wonderful session thank you, sir!!
@jerelynbarrientos2064 Жыл бұрын
you explain so well! thank you!
@nathaliamesquita67403 жыл бұрын
Well, that's the fastest I understood anything in linear algebra
@trishatalaroc29683 жыл бұрын
I do have a question about this part 1:51. How come the answers of 4x7, 4x2, and 3x2 are all negative? Is it always negative when in fact they are all positive?
@jursamaj3 жыл бұрын
That's the way the determinant of a 2*2 matrix is defined: [a b | c d] is ad-bc. So the one that is [3 4 | 7 -5] above yields 3*5-4*7.
@republicofprogaming7853 жыл бұрын
Professor Dave!!! Every thing is perfect except the audio. Please be loud!!!!
@vandanareddy57802 жыл бұрын
I love that introduction song
@mrudulbuddhadeo73052 жыл бұрын
I really understand the concept ....thanku sir
@soilscience62974 жыл бұрын
Thank you professor jave
@erenbeggarverypoor3 жыл бұрын
I like the intro so much.and sama as professor dave
@anandswaroop19713 жыл бұрын
Thank u so much sir .....u made me understand so clearly😊😊
@timeless_escapades7 ай бұрын
you're a life saver 🙏🏻
@cindyle1162 жыл бұрын
thank you!! this is informative
@zjyub Жыл бұрын
I wish you would have shown the easier way to set up the multiplication within the vectors set up.
@masonengland3067 ай бұрын
Carrying me through calc by day. Crushing flat earther's by night
@malharshah90254 жыл бұрын
What is the tune during comprehension...someone plrase tell! I really like it....it is relaxing and satisfying!
@ProfessorDaveExplains4 жыл бұрын
it's just a dumb thing i made up! if you go to my "just for fun" playlist there is a five hour loop of it in there, just in case you fell like listening for longer!
@malharshah90254 жыл бұрын
Thank you professor!!!
@huyta4899 Жыл бұрын
Why is it minus J on the very first step, explain please
@lufunonemakhavhani50975 жыл бұрын
tnx Mr Dave u rock 😚
@nick-no6pi4 жыл бұрын
thank you prof dave
@nick-no6pi10 ай бұрын
aint no way i came back 3 years later cos I forgot
@Aaron067 Жыл бұрын
How to find the direction of the vector product of 2 vectors : 2:25 to 3:05
@mahimapatel87062 жыл бұрын
Thank you professor!
@xCharjx4 жыл бұрын
Helps a lot! Thanks Professor Dave.
@kjasalewjathan2 жыл бұрын
The right hand rule remimds me of Poyntings vector
@davidmccabe64713 жыл бұрын
My University teaches us the cross product in the form i+j+k not as you have as i-j+k, do they give the same results, do you know why it's different?
@MohitBaboria4 ай бұрын
I think there is a misunderstanding When you expand a determinant along any row or column you will always get atleast one negative co factor
@ruirui_1304 жыл бұрын
Thank you
@MyPiano6294 жыл бұрын
The first one shouldn't be -3i+19j-10k?
@nanay63584 жыл бұрын
Yes it should be -27i+19j+10k
@zainabal-dujaili28254 жыл бұрын
yes you are right i find the same things
@FavourExcel-sp1jk7 ай бұрын
Sir what if i am been given a number or component like a=(1,2, -3) and b=(2,-3,4) How can i solve it
@aphiwemkhwanazi20413 жыл бұрын
the best to ever exist
@pcboom28973 жыл бұрын
Superb sir thank you ❤🙏
@SolidPayne3 күн бұрын
These videos really don’t help university’s case in being a useless way of demonstrating your effectiveness in a field. 90% of the time I swear I actually get better by KZbin not lectures.
@RajKapoor-ix4mk6 жыл бұрын
Hi Mr Dave.
@jaclynrosenthal69393 жыл бұрын
At 2:59, the right right-hand diagram seems to show that a & b are perpendicular to each other, but they don't have to always be perpendicular, right?
@carultch3 жыл бұрын
True. The input vectors don't necessarily need to be perpendicular. When they are not perpendicular, the output cross product vector will still be perpendicular to both of them, and in a direction determined by the right hand rule. Simply let your middle finger rotate to a position other than perpendicular to your index finger. Your thumb will still identify the direction of the cross product resultant. The magnitude of the cross product will be the area of a parallelogram, defined by the two vectors as two of the adjacent sides of the shape. You can use this as a shortcut for finding the area of a triangle among three points in space in general. Find a vector between point A and point B, and another vector between point A and point C. Take the cross product, find its magnitude, and divide by two.
@ManyuRamKasetty Жыл бұрын
Thank you!
@AndSooOn3 ай бұрын
Amazing. Thank you.
@pratham263610 ай бұрын
How the +13j comes if there is a -(-5-8) equation it should be the -13
@gamexx66762 жыл бұрын
why did you subtract at 1:50
@ramijkhan90383 жыл бұрын
It would have been a little better if you would've shown the matrix...
@sumedhbaviskar38175 жыл бұрын
bXc must be -27i -42j -16k am i right?
@adrienjoshua67104 жыл бұрын
nope, its correct
@lunam114 жыл бұрын
It should be -43j
@haneulkim490210 ай бұрын
If cross product of two vectors is orthogonal to both of them doesn't that mean new dimension is added? so if there exists two vectors in 2-d plane if we apply right hand rule does the thumb point upward introducing new 3rd dimension Z-axis?
@carultch8 ай бұрын
Yes. A cross product of two vectors in 2-d space, requires a third dimension for the resultant. If you cross unit vectors i-hat and j-hat, in that order, the resultant is k-hat, which produces the z-axis. By convention, a standard right-handed coordinate system, puts the x-axis (i-hat unit vector) on the pointer finger, the y-axis (j-hat unit vector) on the middle finger, and the z-axis (k-hat unit vector) on the thumb. The cross product in a purely 2-dimensional space, is just a scalar, rather than a vector. If we lived in flatland, applications of the cross product like torque, would just be scalars.
@avamcdonald44373 жыл бұрын
so helpful once again. thanks.
@khwajaabdurrehman13758 ай бұрын
Wait, in which previous video did you discuss vector dot product? I can't seem to find it in any previous video in the linear algebra series.
@ProfessorDaveExplains8 ай бұрын
Earlier in the big math playlist
@burningsilicon1496 жыл бұрын
I’m always told that the cross product is perpendicular to the 2 vectors but never given a explanation so I have to just accept as fact but Professor Dave could you please provide the reason for this.
@carultch3 жыл бұрын
Set up a general case of a cross product: cross |i j k| |a b c| |d e f| i*(b*f - c*e) + j*(c*d - a*f)+ k*(a*e -b*d) = Then take the dot product with the above, and the original vectors dot = a*(b*f - c*e) + b*(c*d - a*f) + c*(a*e - b*d) a*b*f - a*c*e + b*c*d - a*b*f + c*a*e - c*b*d Cancel equal and opposite terms: a*b*f - a*c*e - a*b*f + c*a*e a*b*f - a*b*f 0 Do the same with the other original vector, and you will see that the dot product of any vector and its cross product with a second vector, will always be zero. This indicates that the cross product is perpendicular to both original vectors.
@burningsilicon1493 жыл бұрын
@@carultch Good explanation I didn’t think of using the dot product on a general crossproduct vector to check if the resulting crossproduct vector was perpendicular to the original vectors ,but this only proof only applies to 2d crossproducts is there a more general proof that extends to general (n dimension) crossproducts.
@carultch3 жыл бұрын
@@burningsilicon149 The cross product proof I gave, applies to crossing two 3-dimensional vectors in general, and it shows that no matter what the vectors are, the dot product of each source vector and the cross product resultant is zero. The proof depends on it already being established that a dot product of zero means perpendicular vectors. The N-dimensional cross product doesn't really exist, as it is a concept which is only defined in 3-dimensional vector spaces. You can cross two 2-d vectors, and the result is perpendicular to the plane of both of them, requiring 3-d space to work with all three vectors. You can cross two 1-d vectors, and the result is guaranteed to be zero. But for 4-d vectors, there is no cross product defined. There are other types of vector multiplication in higher dimensional vector space, that I know nothing about.
@burningsilicon1493 жыл бұрын
@@carultch I wasn’t aware that above 3 dimensions the crossproduct isn’t defined.I’ve taken linear algebra and they usually extend say matrix vector multiplication to a arbitrary number of dimensions (n) I assumed that applied to crossproducts as well.