The Wrong Batch Size Will Ruin Your Model

  Рет қаралды 18,855

Underfitted

Underfitted

Күн бұрын

Пікірлер: 32
@ErlendDavidson
@ErlendDavidson 2 жыл бұрын
If you scale the batch size by the learning rate (i.e. lr=(batch_size/32.)*0.01) then the stochastic gradient descent looks sort of okay here.
@underfitted
@underfitted 2 жыл бұрын
Interesting :)
@jasdeepsinghgrover2470
@jasdeepsinghgrover2470 2 жыл бұрын
I completely agree ... Because the number of updates happening depend on batch size and even the size of the update. So if the learning rate is scaled according to batch size linearly the model can perform very well even with much smaller batches.
@OliverHennhoefer
@OliverHennhoefer 2 жыл бұрын
Really like the videos. However, I want to warn against the general statement that a batch size of one is not recommended. It really depends on the problem/data. So don't simply dismiss stochastic gradient descent, try it!
@underfitted
@underfitted 2 жыл бұрын
I think that’s fair. I’ve never used it in any of the problems I’ve worked on, but you are right.
@edmundfreeman7203
@edmundfreeman7203 Жыл бұрын
This is the kind of thing that I hate about deep learning. A single parameter in the optimization method can completely change the results. Batches should be small but not too small. How small? That's for heuristics but will change on different data sets.
@Metryk
@Metryk 10 ай бұрын
Hi! Maybe you can help me with this one: if I want to test an already pre-trained image classifier, how do I proceed regarding the amount of images used? The set containing test images has 100k images, I guess it wouldn't make any sense to load them all at once, so how do I proceed? Thanks!
@ErlendDavidson
@ErlendDavidson 2 жыл бұрын
What do you think of (artificially) adding noise to the learning rate. I feel like it used to be more popular to do that, but almost never see it these days.
@underfitted
@underfitted 2 жыл бұрын
Yeah… never seen that honestly. I’ve used schedules to decrease the learning rate over time, but never read about adding noise to it.
@lakeguy65616
@lakeguy65616 2 жыл бұрын
so, what is the optimal batch size?
@underfitted
@underfitted 2 жыл бұрын
It depends. Start with 32 and experiment from there.
@lakeguy65616
@lakeguy65616 2 жыл бұрын
@@underfitted Does the amount of main memory Ram or GPU ram make a difference? (great videos!)
@underfitted
@underfitted 2 жыл бұрын
It does! Your batch has to fit in memory, or it won't work. When you are working with images, for example, you'll quickly find that your batch size can't be too large if you want to fit it in the GPU's memory.
@johnmoustakas8897
@johnmoustakas8897 2 жыл бұрын
Good work, hope your channel gets more attention
@underfitted
@underfitted 2 жыл бұрын
Thanks, John! It takes time and work but I’ll make it happen.
@OmarBoukchana
@OmarBoukchana Жыл бұрын
i didnt see a helpful video like this one in the entire internet, thank you ♥
@underfitted
@underfitted Жыл бұрын
Glad it was helpful!
@axelanderson2030
@axelanderson2030 Жыл бұрын
If you generate a dummy dataset and set a static learning rate, then smaller batch sizes work better? wtf?
@Agrover112
@Agrover112 2 жыл бұрын
Hey love this video! Was losing touch of the basics !
@underfitted
@underfitted 2 жыл бұрын
Glad it was helpful!
@Levy957
@Levy957 2 жыл бұрын
Amazing!! Did u know why the batch size os always 32, 64, 128?
@underfitted
@underfitted 2 жыл бұрын
I read somewhere about the ability to fit batches in a GPU... can't remember where exactly. That being said, I've seen experiments that show that it really doesn't matter much (if at all.)
@MrAleksander59
@MrAleksander59 2 жыл бұрын
It's better for memory usage. GPU, CPU, hard drives, SSD and other in the current 2-bit logic uses memory blocks with sizes of power 2. 2^5 = 32, 2^6=64, 2^7=128 etc. You always want maximum usage of memory. For example you have array with floats, each float will take 32 bits. So, at least it divisible by 32.
@muhammadtalmeez3276
@muhammadtalmeez3276 2 жыл бұрын
Your videos are amazing. Thank you so much for this great knowledge and beautiful videos.
@underfitted
@underfitted 2 жыл бұрын
Glad you like them!
@ziquaftynny9285
@ziquaftynny9285 Жыл бұрын
I love your presentation style! Very energetic :)
@underfitted
@underfitted Жыл бұрын
Thanks
@Darkraak
@Darkraak Ай бұрын
Great video man 👏
@akshay0072
@akshay0072 6 ай бұрын
Good content. Try improving ur way of teaching. Learning should in relaxed tone
@underfitted
@underfitted 6 ай бұрын
Thanks! This was an old video. I’ve tried to improve in the latest few.
@michaelsprinzl9045
@michaelsprinzl9045 7 ай бұрын
A new cat video. Cute.
@sarahpeterson2702
@sarahpeterson2702 Жыл бұрын
the question is whether if you use a batch and reach the global minimum is your model functionally equivalent to one that didn't batch? Are the weights identical... no they aren't . if your model is generative you don't have equivalence with batch/non batch.
AI Basics: Accuracy, Epochs, Learning Rate, Batch Size and Loss
10:55
Prof. Ryan Ahmed
Рет қаралды 22 М.
Players push long pins through a cardboard box attempting to pop the balloon!
00:31
Ice Cream or Surprise Trip Around the World?
00:31
Hungry FAM
Рет қаралды 18 МЛН
Random Emoji Beatbox Challenge #beatbox #tiktok
00:47
BeatboxJCOP
Рет қаралды 68 МЛН
The Most Important Algorithm in Machine Learning
40:08
Artem Kirsanov
Рет қаралды 515 М.
Dba: Truncate partition and merge it SQL server
2:30
Peter Schneider
Рет қаралды
All Machine Learning algorithms explained in 17 min
16:30
Infinite Codes
Рет қаралды 356 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 375 М.
Active Learning. The Secret of Training Models Without Labels.
6:31
A Machine Learning roadmap (the one I recommend to my students)
19:56
ML Was Hard Until I Learned These 5 Secrets!
13:11
Boris Meinardus
Рет қаралды 339 М.
Introduction To Autoencoders In Machine Learning.
13:54
Underfitted
Рет қаралды 12 М.
How to fine-tune a model using LoRA (step by step)
38:03
Underfitted
Рет қаралды 11 М.
Players push long pins through a cardboard box attempting to pop the balloon!
00:31