Dear Editor of the TileStats series, sincere thanks for this video! I have read and heard many different explanations of the logistic regression model, but never really understood the intuition behind it. This is greatly done, I finally understood the sense of the model. I look forward to see other videos of yours.
@tilestats3 жыл бұрын
Thank you!
@stellazhou28342 жыл бұрын
Your illustration is easy to understand and also cover all the important point! And the subtitle is extremely helpful for a non native English speakers like myself.
@nikeforo26123 жыл бұрын
OMG you made it so enjoyable and easy to follow. I re-learned in few minutes what it took me hours over hours to understand reading relevant literature. Thanks a lot
@tilestats3 жыл бұрын
Thank you!
@sisibocitytv8 ай бұрын
The best explanation ever encountered.
@SnoopTomm2 жыл бұрын
This channel is pure gold. Very clear explanation, thank you.
@tilestats2 жыл бұрын
Thank you!
@ratnakarbachu29543 жыл бұрын
Great job and really awesome videos. We owe you and god bless to u and ur's family.
@tilestats3 жыл бұрын
Thank you!
@izb12758 ай бұрын
Amazing video and explanation
@roopaperuri67213 жыл бұрын
Very clearly explained... Thank you 🥰
@tilestats3 жыл бұрын
Thank you!
@gr8potatosaurusofthunderfart5 ай бұрын
does all scenarios probability form the sigmoid curve when plotted ?
@helenadesoba88942 жыл бұрын
You did a great job with your explanation. Thanks a lot.
@tilestats2 жыл бұрын
Thank you!
@FarizDarari3 жыл бұрын
Many many thanks for this wonderful video with clear explanation!
@tilestats3 жыл бұрын
Thank you!
@basbees2 жыл бұрын
Amazing and very simple to understand, thanks for this great video :)
@tilestats2 жыл бұрын
Thank you!
@matilda757019 күн бұрын
where did you get the b0 and b1?,
@giovannibrufani36034 ай бұрын
Nice video. I have a question about using logistic regression with low prevalence (23:25): does NPV decrease, due to so many false negatives? However, in the example of the video dedicated to PPV and NPV, false negatives decrease and false positives increase with low prevalence
@tilestats4 ай бұрын
Do you mean low prevalence in the sample or in the population? With a low prevalence in the sample, you can adjust for this by changing the cutoff value.
@giovannibrufani36034 ай бұрын
@@tilestats ok, i'm agree. Is PPV calcolated considering prevalence in population? or in the sample? In last case, should I take into account the prevalence of the population when i'm sampling?
@giovannibrufani36034 ай бұрын
@@tilestats Please, tell me if I'm right: even considering a low prevalence in the population, I take a sample with a prevalence of 50% and I set the cutoff value that maximizes accuracy. Finally, I calculate PPV considering the prevalence in the population.
@tilestats4 ай бұрын
@giovannibrufani3603 yes, sounds right to me. I would also try to calculate the accuracy based on a test data set that I explain in the video about validation.
@giovannibrufani36034 ай бұрын
@@tilestats Sure. I'm not missing any videos in the playlist. Thank you very much for your work and for clarifyng my doubt!!!
@nishanttailor47862 жыл бұрын
Thank for the amazing video!!
@koustubhmuktibodh49015 ай бұрын
Sir, how much of statistics is required for the business analytics program?
@WzRDxDiamond Жыл бұрын
Thanks a lot for this great video! I understand how we get from probability to odds to log-odds. However, I don't understand what the purpose of this is. In maximum likelihood estimation, we adapt b1 so that the log-likelihood is maximized. But this process does not seem to depend on log-odds, right? Is log-odds only necessary for better intepretation of b0 and b1?
@tilestats Жыл бұрын
You actually fit a linear model to the data, which explains why the response variable must be expressed as logged odds. See for example this page: arunaddagatla.medium.com/maximum-likelihood-estimation-in-logistic-regression-f86ff1627b67
@WzRDxDiamond Жыл бұрын
@@tilestats Thanks a lot, I really appreciate your response! I have read the article and other articles from the author. However, I don't understand why it is necessary to fit a linear model to the data?
@tilestats Жыл бұрын
You can fit a nonlinear model to the data, the sigmoid function in this case, but then you have to use nonlinear regression which is not that easy to work with. It is, for example, hard to find the global minimum of the error function for large nonlinear models. I'm actually working on a video about nonlinear regression.
@WzRDxDiamond Жыл бұрын
@@tilestats Thank you, looking forward!
@AhmedShaaban1 Жыл бұрын
Thanks a lot for the videos ... very helpful. Wondering if the data used in this video is available to download to replicate the analysis being done? Thanks
@tilestats Жыл бұрын
The data is the one you see in the video.
@AhmedShaaban1 Жыл бұрын
Thanks, I guess I can use the data presented in the tables (middle of the video)@@tilestats
@Ruichen81042 жыл бұрын
super fucking clear explanation, I am so glad i learned knowledge from you sir, thank you
@raghuveerbongu3 жыл бұрын
Great videos can I have the slides to refer with the transcript
@tilestats3 жыл бұрын
I'm planning to put the lectures as pdfs on my homepage after the summer.
@গোলামমোস্তফা-শ৮থ5 ай бұрын
How can we estimate the parameters of this model? Can we just use ols method by using the linear model (b+b1.x)? Which is used as power of "e" here?
@tilestats5 ай бұрын
No, have a look at this video: kzbin.info/www/bejne/gGHcpn-raNR_q7c
@SalemAdel-lf3le Жыл бұрын
thank you so much
@pablop.76352 жыл бұрын
How can this apply to qualitative variables. For instance Im reading an article on how social determinants can affect the probability of an adolescent girl being pregnant, but I don't really get how this can be interpreted. There is for example a determinant called "Age of onset of sexual relations" and there is an "estimate value" that is negative 0. And other values are positive and so on. I don't get it. Help
@tilestats2 жыл бұрын
Let's say that we have a variable gender (men and women). If women are set as baseline (coded as zero), men are coded as one, then the estimated parameter say how much larger, or less, the value of the parameter is for the men compared to the women. If that value is positive, the OR is greater than one. If that value is negative, the OR is less than one (see 18:18 for how to calculate and interpret the OR).
@twingsiacor82852 жыл бұрын
What statistical software ate u referring to?
@tilestats2 жыл бұрын
I use R and SPSS, but other tools also work fine.
@twingsiacor82852 жыл бұрын
Can u give the exact formula for ur coefficients (b0 and b1) because we badly need it for a manual computation 😭
@tilestats2 жыл бұрын
kzbin.info/www/bejne/gGHcpn-raNR_q7c
@tilestats2 жыл бұрын
You estimate based on maximizing the likelihood. There is no simple formula to estimate the parameters like in linear regression.
@mikeszymczuk86232 жыл бұрын
How do you determine the quality of the fitted curve ?
@tilestats2 жыл бұрын
Not sure what you mean with quality but maybe this video might help kzbin.info/www/bejne/gGHcpn-raNR_q7c
@md.musfiqueanwar2262 жыл бұрын
Do you have the slides?
@tilestats2 жыл бұрын
If you go to my home page www.tilestats.com, you can buy some of the vidoes as PDFs
@HRVS_DZ Жыл бұрын
How did you get -5.75 and 2.75 ? I used the least square formula and I got -0.34 and 0.39 !
@tilestats Жыл бұрын
You should use the maximum likelihood method. kzbin.info/www/bejne/gGHcpn-raNR_q7c
@learnfrommistakes9554 Жыл бұрын
How to calculate b1 and b 0
@tilestats Жыл бұрын
By the maximum likelihood method: kzbin.info/www/bejne/gGHcpn-raNR_q7c
@sufianbadar8 ай бұрын
Please check the voice of your video before uploading the video. Please increase it if it is too low.