Time Series Talk : Stationarity

  Рет қаралды 303,402

ritvikmath

ritvikmath

Күн бұрын

Intro to stationarity in time series analysis
My Patreon : www.patreon.co...

Пікірлер: 184
@LinLin-rv9ib
@LinLin-rv9ib 4 жыл бұрын
you saved my life in my master study
@mohammadzaid4100
@mohammadzaid4100 Жыл бұрын
Is this playlist good for ma eco student?
@w157-p5x
@w157-p5x Жыл бұрын
Currently preparing for my masters thesis (not economy related). I hardly had any statistics courses during my studies, but now I need knowledge of time series analysis in order to create a forecasting model. Within just 3 days consuming videos on this channel, my understanding of time series analysis went from virtually 0 to something that at least allows me to read relevant papers and understand the basic concept of the proposed models within. This guy is amazing
@uafiewn
@uafiewn 4 жыл бұрын
You're amazing. I'm taking a time series course and the professor isn't so great at explaining any of these concepts. Really appreciate you and your videos! Please keep them coming.
@stephenpuryear
@stephenpuryear 2 жыл бұрын
The best test of whether or not our instructor truly understands a topic is their ability to explain it clearly. You PASS, again!
@ResilientFighter
@ResilientFighter 4 жыл бұрын
Ritvik, this was the most clear explanation of stationary I have ever found. THANK YOU!!!
@akrylic_
@akrylic_ 5 жыл бұрын
Been following since I found your Ridge regression video. You're incredible, keep up the great work!
@ritvikmath
@ritvikmath 5 жыл бұрын
I appreciate it!
@patricke1362
@patricke1362 3 жыл бұрын
your videos are great, first I was skeptical because of the style with the marker/ handwritten. But it is awesome !!! Your voice, your style of speaking, your structure in every video from arima to white noise. Very very valuable content !!!!! keep on going adding value to the world !!
@lynguyen709
@lynguyen709 3 жыл бұрын
OMG your visual example and explanation are very clear and easy to follow. Thank you so much for making such a thoughtful video!
@slothner943
@slothner943 2 жыл бұрын
I've watched a bunch of videos now, started on SVM. The quality and pedagogy of these videos is superb! Great job!
@nickbossi7630
@nickbossi7630 2 жыл бұрын
So nice seeing how to make the time series stationary at end. Much appreciated!
@mauriceligulu5058
@mauriceligulu5058 5 жыл бұрын
Your videos are amazing, you make time series easier. Keep the good work
@ritvikmath
@ritvikmath 5 жыл бұрын
Thanks!
@lashlarue7924
@lashlarue7924 6 ай бұрын
Best math teacher I have ever had the pleasure of being taught by! ❤
@tracyliu2168
@tracyliu2168 4 жыл бұрын
Fantastic Video!! The stationary has been puzzled me for a long time, this is the simplest and easiest video to understand!!
@seanmcgill5330
@seanmcgill5330 5 жыл бұрын
Seriously amazing, learned more from watching your videos for a hour then countless grad school lectures.
@fazilahamed1240
@fazilahamed1240 3 жыл бұрын
Such videos are the reason why I still love KZbin
@nabarodawn9040
@nabarodawn9040 4 жыл бұрын
you are seriously a life savor, much love
@andrewarden104
@andrewarden104 6 ай бұрын
so easy to understand, I've watched everything on KZbin but this is where things start to make sense lolllll
@dariosilva85
@dariosilva85 4 жыл бұрын
God bless you, man. It is like watching art, when someone can explain and articulate things clearly like you.
@Chillos100
@Chillos100 4 жыл бұрын
Damn, I was struggling to grasp this in my Finance class 8 years ago, and finally it landed!! You nailed it man!! Thnx a lot
@ritvikmath
@ritvikmath 4 жыл бұрын
no problem !
@tassoskat8623
@tassoskat8623 3 жыл бұрын
These videos are so great! I am really happy I found them and I have to thank you for creating them. I would be greatful if you or anyone from your viewers could suggest me a book on time aeries analysis for referencing purposes. Thank you again 😊
@chrstfer2452
@chrstfer2452 Жыл бұрын
Really wish id discovered this channel before my semester ended
@KRKUN
@KRKUN 2 жыл бұрын
Man ! your explanation is a life saver for Me thanks a lot :)
@lima073
@lima073 3 жыл бұрын
Thank you very much for such amazing class !
@pubgmobileclashroyale4725
@pubgmobileclashroyale4725 Ай бұрын
Nice explanation, good luck
@robertapolimeni3394
@robertapolimeni3394 4 жыл бұрын
Really good explanation, thank you man just incredible clear
@ritvikmath
@ritvikmath 4 жыл бұрын
You're very welcome!
@gianlucalepiscopia3123
@gianlucalepiscopia3123 5 жыл бұрын
Never understood statistics any better...keep going please
@stefanobortolon6559
@stefanobortolon6559 3 жыл бұрын
Very intuitive (and quick) explanation!
@nethrasriram7759
@nethrasriram7759 4 жыл бұрын
Thank you for such a clear explanation!
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@nidhisharma-io6gs
@nidhisharma-io6gs 5 жыл бұрын
Excellent, made time series concepts easier and interesting
@praveen2hearts
@praveen2hearts 5 жыл бұрын
Very concise and clear explanation...
@ivanklful
@ivanklful 3 жыл бұрын
Nice explained! I would like to see one practical example that would further elaborate this matter. Anyway great video and thanks!
@ritvikmath
@ritvikmath 3 жыл бұрын
Thanks! And good suggestion
@lavidrori7518
@lavidrori7518 2 жыл бұрын
You are absolutely master piece
@AN-yr7nm
@AN-yr7nm 4 жыл бұрын
Great work, super nice and simple explanations! You rock :D
@ahnafislam6933
@ahnafislam6933 25 күн бұрын
Wish my professor was half as good as you in explaining time series concepts
@nedjoua8326
@nedjoua8326 5 жыл бұрын
U are amazing.. i finally understand what time series are .. keep it up .. 🤩🤩🤩
@ritvikmath
@ritvikmath 5 жыл бұрын
No problem!
@CHRISTICAUTION
@CHRISTICAUTION 11 ай бұрын
Incredible useful for our my masters thesis
@kenlau4649
@kenlau4649 3 жыл бұрын
Thanks for clearing up the question about whether we can do a transformation like Zt to make the series stationary.
@renukaul9416
@renukaul9416 4 жыл бұрын
Concept of stationarity is nicely explained
@krishnasarathmaddula194
@krishnasarathmaddula194 3 жыл бұрын
This is Amazing,Sir. Thank you!
@rodrigogaleano5145
@rodrigogaleano5145 6 ай бұрын
Good video.
@eug4136
@eug4136 2 ай бұрын
Nice explanation. Another idea pops up at 5:47. Once you recognize it is a linear function (a line) with noise, wouldn't it be easier to shift-rotate the coordinate system making that line the new x-axis? At least to explain the intuition behind further manipulations.
@himanshugupta4482
@himanshugupta4482 4 жыл бұрын
Yeah you are really great hope you continue to make the awesome videos ❤️❤️❤️
@gaganpreetkaurchadha9169
@gaganpreetkaurchadha9169 4 жыл бұрын
Thank you for this helpful video
@ritvikmath
@ritvikmath 4 жыл бұрын
Glad it was helpful!
@larsschiffer1630
@larsschiffer1630 3 жыл бұрын
perfect video, thanks!
@Mewgu_studio
@Mewgu_studio Жыл бұрын
Thanks this corrected a lot of my misunderstanding!
@ritvikmath
@ritvikmath Жыл бұрын
Great to hear!
@sohailhosseini2266
@sohailhosseini2266 2 жыл бұрын
Thanks for the video!
@karthikb5
@karthikb5 3 жыл бұрын
Excellent! Thank you!
@TheRish123
@TheRish123 3 жыл бұрын
Just insane! Thank you so much
@justrandomgames7964
@justrandomgames7964 4 жыл бұрын
Excellent guide, thanks
@christiwanye4890
@christiwanye4890 Жыл бұрын
thank you for the video
@Youngduck93
@Youngduck93 3 жыл бұрын
Found another gem on youtube :)
@keewee235
@keewee235 3 ай бұрын
nice vid, much appreciated
@mattpickering4223
@mattpickering4223 Жыл бұрын
Damn I need to refresh on some stuff but this helps out so much 🙏
@ritvikmath
@ritvikmath Жыл бұрын
Thanks!
@hamishloux
@hamishloux 5 жыл бұрын
Well paced. Please keep it up!
@minhnguyenbui6827
@minhnguyenbui6827 5 жыл бұрын
excellent work. Your great sharings save me
@ritvikmath
@ritvikmath 5 жыл бұрын
hey no problem!
@neatpolygons8500
@neatpolygons8500 5 жыл бұрын
great explanation, thanks
@hausaislamicinstitue
@hausaislamicinstitue 3 жыл бұрын
Thank you so much
@SteveKritt
@SteveKritt 4 жыл бұрын
Thank you very much, love it
@qqq_Peace
@qqq_Peace 5 жыл бұрын
Hi, your video is excellent, making time series much more understandable. But I couldn't find the video specific for Augmented Dickey-Fuller test in your videos. As you mentioned in this video, there is another video on ADF test. Thanks!
@chitracprabhu2922
@chitracprabhu2922 4 жыл бұрын
Great explanation !
@Pannafreestyle
@Pannafreestyle 2 жыл бұрын
youre the best!
@hahahat47
@hahahat47 4 жыл бұрын
wonderful video
@manishkulkarni9982
@manishkulkarni9982 5 жыл бұрын
Very well explained. Can you pl include a video on ADF test and how to interpret the P value?
@frankl1
@frankl1 2 жыл бұрын
Good explanation, thanks. However, I am a bit confused with the condition on seasonality and wikipedia says seasonal cycles do not prevent a time series to be stationary. Could you share an example of a stationary time series that is white noise? Arent't f(x) = cos(x) and g(x) = sin(x) stationary?
@RG-rb2mi
@RG-rb2mi Жыл бұрын
Outstanding video, Any chance there is a video where you code this or solve an example with some values for those constant in the final equation for Z(t) Thanks a lot
@sanjayd411
@sanjayd411 3 жыл бұрын
This explanation assumes “ strict sense” stationarity yes? There’s a slightly relaxed definition of stationarity called the “ wide sense” stationarity. I think the white noise process falls under ‘wide sense’ stationarity.
@byan3495
@byan3495 2 жыл бұрын
Excellent video!! great and concise explanation! But i just have one question left. What we forecast is the ts after differencing, but do we need to recover the differenced ts back to the original one? Will the forecast be the same? Or there is just no need to convert it back? Thanks in advance!
@akshaypai2096
@akshaypai2096 5 жыл бұрын
Thanks for finally making me understand this concept, but im still trying to figure out what effect Stationarity has on my forecasts or how itll influence my forecast?
@anesethemi5054
@anesethemi5054 3 жыл бұрын
the models that are used for forecasting rely under the assumption that the time series that we want to model is stationary, without stationarity condition AR, MA, ARMA model cannot be utilized for modelling purposes.
@chunyinlee2542
@chunyinlee2542 2 жыл бұрын
Brilliant
@vikrantsyal8945
@vikrantsyal8945 Жыл бұрын
there is seasonality in your example...there's an upward trend, as well as seasonality about the trend
@vaibhav1131
@vaibhav1131 3 жыл бұрын
stationerity assumes variance is constant. But hetroskedecity says variance is time specific. But in time series we see present of stationerity and hetroskdecity as well. How is this explained? shd these two not be mutually exclusive
@peacem351
@peacem351 6 ай бұрын
Thanks for the video! I am just a little bit confused by the example in the end of the video. As the time series has already been modeled by the linear regression model, then why do we need to do the differencing to create a new series for modeling using AR/MA/ARMA? So in the end, to model such series, we need to combine both linear regression and AR/MA/ARMA? Or is it that we use AR/MA/ARMA to substitute the linear regression model? Thanks!
@piratassarajevo4293
@piratassarajevo4293 Жыл бұрын
Where did B1t and B1(t-1) go when you calculated z?
@kevineotieno5
@kevineotieno5 11 ай бұрын
Thanks for pointing out. I also did not understand the expansion that led to the final value of Z.
@chilansethuge8487
@chilansethuge8487 4 жыл бұрын
Great !
@charlesdixon1950
@charlesdixon1950 3 жыл бұрын
Can you answer why B1t - B1t-1 = B1?
@zhanbolatmagzumov6409
@zhanbolatmagzumov6409 3 жыл бұрын
Hi! Thank you a lot. Could you make some videos on cointegration and causality. Concepts are very tricky for me
@atharvat223
@atharvat223 5 жыл бұрын
i didnt understand the variance part .how variance of the errors is 2k^2 .Can someone explain it or suggest some reading material
@mmczhang
@mmczhang 4 жыл бұрын
I have the same question.
@David-bo7zj
@David-bo7zj 4 жыл бұрын
I also have the same question, would they not just cancel?
@shri1905
@shri1905 4 жыл бұрын
@@David-bo7zj No, variances never cancel out. For any 2 random variables, X and Y , Var(X+Y) = Var(X) + Var(Y) + 2*Cov(X,Y) and Var(X-Y) = Var(X) + Var(Y) - 2*Cov(X,Y) where Cov is the covariance. When, random variables are independent Cov(X,Y) =0. Hence, Var(e(t) - e(t-1)) = var(e(t)) + var(e(t-1)) - 0 = 2K^2
@darwin6984
@darwin6984 2 жыл бұрын
Very good video, may I know what is Yt here representing?
@LamPham-jy6wo
@LamPham-jy6wo Жыл бұрын
thank you
@ritvikmath
@ritvikmath Жыл бұрын
You're welcome
@comicmanification
@comicmanification 2 жыл бұрын
Awsome!!
@weipeng2821
@weipeng2821 4 жыл бұрын
much better than the professor!!!
@tarikutaye927
@tarikutaye927 5 жыл бұрын
very nice I am happy it
@Karenshow
@Karenshow 2 жыл бұрын
hello, could you please elaborate a little bit more on the 2K2, 8:56. Thanks
@arda8206
@arda8206 3 жыл бұрын
CAN SOMEONE PLEASE EXPLAIN WHY DO WE NEED STATIONARITY FOR ARMA PROCESS PLEASE? WHAT WILL HAPPEN IF IT IS NOT STATIONARY?
@tirthvora3421
@tirthvora3421 Жыл бұрын
Stationarity in Time series The models like AR, MA assume our time series to be stationary stationary - mean constant, std dev constant and no seasonality non - lot of fluctuations in the data. first there were immense fluctuations, now less -> different std dev - mean is not constant. of a time chunk - seasonality - periodic trend over time how to check? 1. visually 2. global vs local tests (global mean =|= local mean) 3. augmented duckey fuller test how to make it stationary yt = b0 + b1 t + Et ( mean not constant in the graph) new series Zt = yt - yt-1 Zt = b1 + Et - Et-1 E(Zt) = b1 (mean of new series) (Et and Et-1 are constants from some distribution with mean 0) Var(Zt) =
@korman9872
@korman9872 2 жыл бұрын
tx sir
@nnamdinwankwo3140
@nnamdinwankwo3140 5 жыл бұрын
Hi, please could you share the link to the ADF test?
@aborucu
@aborucu 3 жыл бұрын
For the 3rd example, is the mean constant over different time intervals ?
@jaralara6429
@jaralara6429 2 жыл бұрын
I have the same question!
@mmaldonado7584
@mmaldonado7584 4 жыл бұрын
I have been watching your amazing teaching videos which are so intuitive. Would it be possible for you to post the sheet notes you work on somewhere? It would be easier for us to make notes on top of those instead of trying to make our own sheets. Thank you!
@leonidasat
@leonidasat 4 жыл бұрын
Hey! Amazing content! However, I get lost in these formulas. Could you reccommend any course or book to learn more about these formulas? Thanks!
@MsDosSantoss
@MsDosSantoss 4 жыл бұрын
Thank you but I am afraid, you are confused between seasonal and cyclical components because at 3:45 your data is all seasonal but just 3rd one is cyclical. Please consider then discuss again :)
@ramesh-dk9nr
@ramesh-dk9nr 2 жыл бұрын
8:55 Condition 3 of seasonality isnt satisfied right, graph is not cyclic, how is Zt stationary?
@jkmetaphormaster1754
@jkmetaphormaster1754 4 жыл бұрын
great job! thx
@sandroneymar5368
@sandroneymar5368 10 ай бұрын
Would have been cool if you provide a way to download the scanned paper
@user-or7ji5hv8y
@user-or7ji5hv8y 3 жыл бұрын
Can you do a practical example of going from the differences back to y, the variable that we really want to forecast.
@steff.5580
@steff.5580 5 жыл бұрын
Why do you say that, in example number 3, the mean rule is not violated? If we look at different intervals, like in example number 2, then the mean will not be constant (for instance, taking the first half of a period and the entire period).
@ritvikmath
@ritvikmath 5 жыл бұрын
That's a great question! You are right that we can always find two intervals with different means but the idea of stationarity has more to do with whether the mean is consistently getting higher or lower. In the second graph, the mean is consistently rising whereas in the third graph, the mean is centered around 0. Hopefully that helps a bit!
@Raaj_ML
@Raaj_ML 3 жыл бұрын
Good Video. But how is the mean constant in the third sine wave ?
@Slothlodge
@Slothlodge 5 жыл бұрын
This doesnt make sense to me as the criteria we learn in class is different. "Stationarity means that the mean and the variance of the process are independent of time / constant over time". Examples in our class would rather look at the first graph as seasonality Second would be right. but third is stationary. But in general we have many graphs with bigger and smaller fluctuations but are still stationary. So the statement around time series "1" is in direct opposition to what we are learning. a stationary time series can still have higher and lower peaks but as long as that is constant over time it should be good? Im so confused.
@jordanhansen6649
@jordanhansen6649 4 жыл бұрын
The third is considered stationary tbh
@sgrouge
@sgrouge 4 жыл бұрын
Ive been struggling to understand third condition of stationarity until now. I had an intuition it was something like seasonality but it was really not clear for me. Ty.
@PepeTostado
@PepeTostado 3 жыл бұрын
How do you use seosonality on time series if you cannot have it with stationary data?
@bigvinweasel1050
@bigvinweasel1050 7 ай бұрын
Hey @ritvikmath, I tried using ADF and KPSS on 3 sample datasets, similar to the ones in your video. One dataset violates the constant mean, the other thd constant variance, and lastly one with seasonality. However, it seems that both the ADF and KPSS are returning the datasets to be stationary for both non-constsnt deviation and the seasonality dataset. It accurately tests non-constant mean datasets. Any thoughts as to why that would happen?
Unit Roots : Time Series Talk
13:53
ritvikmath
Рет қаралды 160 М.
Time Series Talk : White Noise
7:36
ritvikmath
Рет қаралды 180 М.
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Sigma Kid Mistake #funny #sigma
00:17
CRAZY GREAPA
Рет қаралды 30 МЛН
Teach me STATISTICS in half an hour! Seriously.
42:09
zedstatistics
Рет қаралды 2,9 МЛН
Time Series Talk : ARIMA Model
9:26
ritvikmath
Рет қаралды 356 М.
Two Effective Algorithms for Time Series Forecasting
14:20
What is Stationarity
5:01
Aric LaBarr
Рет қаралды 83 М.
Time Series Talk : ARCH Model
10:29
ritvikmath
Рет қаралды 152 М.
How To Know Which Statistical Test To Use For Hypothesis Testing
19:54
Amour Learning
Рет қаралды 833 М.
Time Series Talk : Autocorrelation and Partial Autocorrelation
13:16
Time Series Talk : Augmented Dickey Fuller Test + Code
9:39
ritvikmath
Рет қаралды 133 М.
Lecture 13   Time Series Analysis
42:54
Jordan Kern
Рет қаралды 323 М.
Time Series Talk : Autoregressive Model
8:54
ritvikmath
Рет қаралды 348 М.
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН