Translating NO and NOT ALL into Predicate Logic

  Рет қаралды 24,175

TrevTutor

TrevTutor

Күн бұрын

Пікірлер: 20
@iliyasone
@iliyasone 2 жыл бұрын
9:14 I think it's incorrect. We know, that no professor fails every student, it's mean that all professors not fail AT LEAST one student, so it would be something like that: Ɐx[Px-> Ǝy[Sy ∧ ¬Fxy]]
@micaeltchapmi
@micaeltchapmi 2 жыл бұрын
I agree as well. I wrote the alternative translation as Ɐx[Px -> ¬Ɐy[Sy -> Fxy]] which I believe is equivalent to ∀x[Px→∃y[Sy∧¬Fxy]]
@naiko1744
@naiko1744 2 жыл бұрын
I agree as well
@gooddeedsleadto7499
@gooddeedsleadto7499 3 жыл бұрын
Thanks for the explanation with sketches. Could u also draw sketches related to the four questions in the end?
@madelinelong6136
@madelinelong6136 3 жыл бұрын
Thanks for the videos! I would love to see a video on FOL to CNF conversions. :)
@ali_rauf660
@ali_rauf660 7 ай бұрын
Thanks for the videos, appreciate a lot !!
@rhino_for_free
@rhino_for_free Жыл бұрын
than you sir it was really helpful
@Mentalcheez
@Mentalcheez 3 жыл бұрын
I'm confused about the placement of the brackets for the last question. Wouldn't it be NotAllx [ [...] -> Rxy] ? Why is the implication for "becoming richer" not directly consequential to "every kid who writes"?
@raphaelgomes2947
@raphaelgomes2947 9 ай бұрын
For #4, could you write ~∀x[Kid(x) & Writes(x) → Richer(x, ~x)] That sort of makes sense to me semantically but seems to have a contradiction there.
@abdelkaderbensaid432
@abdelkaderbensaid432 3 жыл бұрын
Thank you so much, sir!
@nickevans8551
@nickevans8551 3 жыл бұрын
For the alternative method of "No professor fails every student" it's written in the video as ∀x[Px→∀y[Sy→¬Fxy]]. Doesn't this translate as "for all x, if x is a professor, then for all y, if y is a student, then the professor (x) does not fail the student (y)". Wouldn't this be equivalent to saying "Every professor doesn't fail any students" or "No professor fails any students"? It seems like it should be written ∀x[Px→∃y[Sy∧¬Fxy]] so to say "for all x, if x is a professor, then there exists a student (y) that is not failed by professor (x)". Wouldn't this be the be equivalent to "No professor fails every student" or am I missing something?
@albertobriceno416
@albertobriceno416 2 жыл бұрын
I came to the same conclussion.
@micaeltchapmi
@micaeltchapmi 2 жыл бұрын
I agree as well. I wrote the alternative translation as Ɐx[Px -> ¬Ɐy[Sy -> Fxy]] which I believe is equivalent to ∀x[Px→∃y[Sy∧¬Fxy]]
@naiko1744
@naiko1744 2 жыл бұрын
I agree as well
@adept2814
@adept2814 3 жыл бұрын
Hey man! What happened to your website? It was nice having an overview of the different discrete maths videos :
@Trevtutor
@Trevtutor 3 жыл бұрын
The site is being transformed to contain full courses with lessons, topics, quizzes, and supplemental materials. Unfortunately the playlists will be the best way to find material at the moment. Sorry!
@DaiMoscv
@DaiMoscv 3 жыл бұрын
Not every professor is evil, maybe the sentence isn't but that's fine, lol
@tulikamishra9708
@tulikamishra9708 Жыл бұрын
for no dog is happy what if we write.. for all x NOT Dx OR NOT Hx
@Trevtutor
@Trevtutor Жыл бұрын
That works since it’s equivalent to the paraphrase under the conditional law.
@xx_foxpvp_xx374
@xx_foxpvp_xx374 Жыл бұрын
i love you can i have you and can i please have some more
TRUTH TREES for QUANTIFIERS in Predicate Logic
19:47
TrevTutor
Рет қаралды 13 М.
Translating ENGLISH into PREDICATE LOGIC
26:04
TrevTutor
Рет қаралды 112 М.
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Syntax of PREDICATE LOGIC and WELL-FORMED FORMULAS (wffs)
13:07
Introduction to Propositional Logic Translations
22:01
TrevTutor
Рет қаралды 63 М.
Discrete Math - 1.5.2 Translating with Nested Quantifiers
22:29
Kimberly Brehm
Рет қаралды 99 М.
Universal and Existential Quantifiers,  ∀ "For All" and ∃ "There Exists"
9:32
SCOPE and FREE and BOUND Variables in Predicate Logic
15:39
TrevTutor
Рет қаралды 16 М.
PREDICATE LOGIC and QUANTIFIER NEGATION - DISCRETE MATHEMATICS
15:08
Natural Deductive Logic - Universal and Existential Rules
15:55
Discrete Math 1.2.1 - Translating Propositional Logic Statements
11:10
Kimberly Brehm
Рет қаралды 158 М.
LING 324 [6-3] Translations in Predicate Logic
43:30
TBlockSFU
Рет қаралды 11 М.