Translation and Inverse Laplace Transforms

  Рет қаралды 64,932

Dr. Trefor Bazett

Dr. Trefor Bazett

Күн бұрын

Пікірлер: 54
@juhisaxena3594
@juhisaxena3594 10 ай бұрын
The entire series on Laplace transform is just exceptional
@mili3212
@mili3212 4 жыл бұрын
Thank you so much for a clear and precise video!! I’m so lucky to have just discovered your channel and I hope you gain a lot more recognition soon!!
@orueom7720
@orueom7720 3 жыл бұрын
Thanks so much for this really explanatory video! I'm learning the theory behind the Laplace transforms so that I can use it modelling situations on SIMULINK. As an ChemEng student this is a life saver as it really clears things up!
@DrTrefor
@DrTrefor 3 жыл бұрын
Glad it was helpful!
@caosspearbr7268
@caosspearbr7268 2 жыл бұрын
You're a life saver!! Thanks from Brazil!
@PrachiVerma-h2n
@PrachiVerma-h2n 6 ай бұрын
thank you very much for the clear explanation. you are the best teacher I have ever seen 💜💜
@ricardobautista-garcia8492
@ricardobautista-garcia8492 3 жыл бұрын
Thank you very much for your videos. I recall watching your integration ones 1 year ago when the Pandemic began and in the middle of everything I needed to submit an assignment.
@ricardobautista-garcia8492
@ricardobautista-garcia8492 3 жыл бұрын
This is where I discovered your channel for the first time.
@DrTrefor
@DrTrefor 3 жыл бұрын
Glad they’ve been helping over this last year!
@scottboyer7774
@scottboyer7774 3 жыл бұрын
So far I have a 100 in differential equations because of these videos :D
@ricardoraymond9037
@ricardoraymond9037 3 жыл бұрын
I am enjoying these tutorials👍
@DrTrefor
@DrTrefor 3 жыл бұрын
Glad to hear!
@mileslegend
@mileslegend 2 жыл бұрын
Thank you 😊😊 because of your explanation was able to win a quick solve contest and I got a prize 🏆 😊🥰🔥🔥in Laplace transforms
@chuxiaoguo6721
@chuxiaoguo6721 2 жыл бұрын
What a legend, thank you!
@tonywang7933
@tonywang7933 4 ай бұрын
Thank you so much exactly what I needed!!
@ClvrFarmer
@ClvrFarmer Ай бұрын
saved my ass. 24 hrs for the HW deadline. i have zero clue what laplase is and what is it for. 3 hrs of concentration and finished the HW in 2 hrs. amazing
@VndNvwYvvSvv
@VndNvwYvvSvv 3 жыл бұрын
At 12:00, this is division by 2 not by ½, or multiplication by ½
@yazmrt
@yazmrt 3 жыл бұрын
Thanks for the video and explanations
@asahbernard429
@asahbernard429 8 ай бұрын
i have a question. why di he put (s-1)+1 in the numerator at minute 8:53?
@hanminoru_
@hanminoru_ 2 ай бұрын
integral definition formula
@ManojKumar-cj7oj
@ManojKumar-cj7oj 3 жыл бұрын
at 11:35 I think you forget to include translation part e^t in second inverse transform isn't it Im sorry I didn't see that caption ,sorry again :)
@user-wu8yq1rb9t
@user-wu8yq1rb9t 2 жыл бұрын
Thank you so much ❤️💗
@the_eternal_student
@the_eternal_student 5 ай бұрын
You just threw the idea of t^2 becoming a cube in the denominator without deriving it, so I had no idea what you were talking about. I wish you had said more about how the shift applies when you have two functions being multiplied together as in e^t sin(kt).
@carultch
@carultch 3 ай бұрын
Here's how you derive those two standard Laplace transforms. For polynomial functions t^n in general: L{t^n} = integral t^n * e^(-s*t) dt, from 0 to inf Construct integration by parts table, with t^n differentiated, and e^(-s*t) integrated. Title the columns k for the row number, S for signs, D for differentiate, and I for integrate. Construct several rows until you see the pattern. Then construct the kth row, the nth row, and the (n+1)th row (which will be the final row once we differentiate to zero). k _ _ S _ _ _ _ _ _ _ D _ _ _ _ _ _ _ _ _ _ _ _ _I 0 _ _ + _ _ _ _ _ _ _ t^n _ _ _ _ _ _ _ _ _ _ _ e^(-s*t) 1 _ _ - _ _ _ _ _ _ _ n*t^(n - 1) _ _ _ _ _ _ _ _-1/s*e^(-s*t) 2 _ _ + _ _ _ _ _ _ _ n*(n-1)*t^(n-2) _ _ _ _ _ +1/s^2*e^(-s*t) k _ _ _(-1)^k _ _ _ _ n!/(n - k)! * t^(n - k) _ _ (-1)^k/s^k*e^(-s*t) n _ _ _(-1)^n _ _ _ _ n! _ _ _ _ _ _ _ _ _ _ _ _ _ (-1)^n/s^n*e^(-s*t) n+1 _ _(-1)^(n+1) _ 0 _ _ _ _ _ _ _ _ _ _ _ _ _ (-1)^(n+1)/s^(n+1)*e^(-s*t) All terms at infinity evaluate at zero, due to e^(-s*t). All terms containing any t^(nonzero power) will evaluate to zero at t=0. Thus, the only row that governs the definite integral, is the nth row. Connect the signs with the D-column, and then to the I-column from the next row down. n!*(-1)^n * (-1)^(n + 1) * 1/s^(n + 1) * e^(-s*t) The two alternators multiply to -1: -n!/s^(n + 1) * e^(-s*t) Evaluate at t=inf, evaluate at t=0, and subtract: -n!/s^(n + 1) * [e^(-s*inf) - e^(0)] -n!/s^(n + 1) * [0 - 1] Result: L{t^n} = n!/s^(n + 1) Plug in n = 2: L{t^2} = 2!/s^3
@carultch
@carultch 3 ай бұрын
For deriving L{sin(k*t)}: L{sin(k*t)} = integral sin(k*t)*e^(-s*t) dt Construct IBP table with sin(k*t) in the D-column, and e^(-s*t) in the I-column: S _ _ _ D _ _ _ _ _ _ I + _ _ sin(k*t) _ _ _ e^(-s*t) - _ _ k*cos(k*t) _ _ -1/s*e^(-s*t) + _ _ -k^2*sin(k*t) _ _ 1/s^2*e^(-s*t) Observe that we have a constant multiple of the original integral across the bottom row. Call it I, and construct the result: I = -1/s*sin(k*t)*e^(-s*t) - k/s^2*cos(k*t)*e^(-s*t) - k^2/s^2 * I Shuffle I-terms to the left: I*(1 + k^2/s^2) = -1/s*sin(k*t)*e^(-s*t) - k/s^2*cos(k*t)*e^(-s*t) Multiply thru by s^2 to clear fractions: I*(s^2 + k^2) = -s*sin(k*t)*e^(-s*t) - k*cos(k*t)*e^(-s*t) Isolate I: I = 1/(s^2 + k^2) * [-k*cos(k*t) - s*sin(k*t)]*e^(-s*t) Evaluate at t=inf, and t=0, and subtract: At t=inf, entire integral goes to zero At t=0, sin(k*t) is zero, and cos(k*t) = 1. Lower bound evaluates to -k/(s^2 + k) Thus, when subtracting from upper bound evaluation of zero, we get: L{sin(k*t)} = k/(s^2 + k)
@ritvikkiragi8110
@ritvikkiragi8110 2 ай бұрын
You must watch the videos earlier in series
@Yuen891
@Yuen891 2 жыл бұрын
Thank you so much.If teaching with laplace transform table simultaneously is way better . I love your video
@wunboonail
@wunboonail 4 жыл бұрын
well done. You have planned this presentation so well.
@DrTrefor
@DrTrefor 4 жыл бұрын
Thank you very much!
@continnum_radhe-radhe
@continnum_radhe-radhe 2 жыл бұрын
🔥🔥🔥
@dread2much
@dread2much Жыл бұрын
Damn these videos are a godsend. My professor sucks... at least the one I have in person ;)
@yoyochan8615
@yoyochan8615 3 жыл бұрын
You explained very well, it was very clear and easy to understand, I understand how inverse Lapplace Transform works. But are we going to be asked to show the detailed steps of the process of inverse Laplace Transform? Because you didn't show them in the video, and doing the normal Laplace Transform can show the steps of the integration
@DrTrefor
@DrTrefor 3 жыл бұрын
It’s a bit like the relationship between differentiation and anti derivatives. If you already know the one and have put the work in to get it, you get the other “for free”.
@yoyochan8615
@yoyochan8615 3 жыл бұрын
@@DrTrefor so you are saying normal laplace transform and the inverse often show up the same time? And you mean inverse transform requires less detailed steps? Or doesn't require detsiled steps at all?
@carultch
@carultch Жыл бұрын
@@yoyochan8615 To do Laplace transforms from the t-domain to the s-domain, you can either use the integral definition as the first principals to derive it, or you can use a library of standard Laplace transforms to construct it (which is a much easier method, most of the time). To do inverse Laplace transforms, to get back to the t-domain from the s-domain, you need to manipulate the given expression with algebra and with properties of the Laplace transform to resemble Laplace transforms from the library of standard transforms. There is an integral that can invert a Laplace transform, but it is complicated, and it is a lot easier to use algebra to manipulate the terms to match the standard transforms in the library of transforms.
@gatesfather007
@gatesfather007 3 жыл бұрын
Hi, Trevor, what tablet do you use to write and share the screen with?
@angwe-asencollins3987
@angwe-asencollins3987 3 ай бұрын
Laplace lecture is good
@terramyr2074
@terramyr2074 3 жыл бұрын
this might be a stupid question but why do we add a e^t in front of both cos(2t) and 1/2 sin(2t)
@VndNvwYvvSvv
@VndNvwYvvSvv 3 жыл бұрын
That is the translation in s, from s -> (s-1) where we add e^(at) for (s-a).
@josephhajj1570
@josephhajj1570 4 жыл бұрын
Nice one professor plz can you solve laplace-1(ln(1+s))
@carultch
@carultch Жыл бұрын
Given: L^-1{ln(1 + s)} Use the s-derivative property of the Laplace Transform, where given F(s) = L{f(t)}: -d/ds L{F(s)} = t*f(t) Let G(s) = ln(1 + s), and g(t) be the solution. This means: -d/ds ln(1 + s) = t*g(t) Carry out derivative: d/ds ln(1 + s) = 1/(s + 1) Thus: L{t*g(t)} = -1/(s + 1) Invert: L^-1{-1/(s + 1)} = -e^(-t) = t*g(t) Solve for g(t), and we have our solution: g(t) = -1/t * e^(-t)
@alyashour5861
@alyashour5861 Жыл бұрын
The GOAT
@benetsonichulangula7361
@benetsonichulangula7361 3 жыл бұрын
The final answer i thought it could have e^t as a coefficient of cos 2t +(1/2)sin 2t...i need help on this🙏🏾
@xxxSoulreaperxxx99
@xxxSoulreaperxxx99 2 жыл бұрын
you are correct, note that at the end of the video OP left a note stating that the sin term also needs e^t as a coefficient.
@ninasmith-pd8fv
@ninasmith-pd8fv 2 ай бұрын
none of your ks look like ks
@MrPatrickbuit
@MrPatrickbuit 8 ай бұрын
This is insane
@Knottieyarn
@Knottieyarn Жыл бұрын
Laplace makes me sleepy 😢
@wesleytsao4685
@wesleytsao4685 7 ай бұрын
@eatemadfanaee5954
@eatemadfanaee5954 2 жыл бұрын
brilliant explanation + awful handwriting
@eatemadfanaee5954
@eatemadfanaee5954 2 жыл бұрын
= worth to watch any way
@aayushpatel8913
@aayushpatel8913 3 жыл бұрын
Why just basic things are covered? More complex Problems expected
@VndNvwYvvSvv
@VndNvwYvvSvv 3 жыл бұрын
It's an adequate explanation of the theorem. If you want more problems, search for that
Inverse Laplace Transform Example using Partial Fractions
8:53
Dr. Trefor Bazett
Рет қаралды 158 М.
Using Laplace Transforms to solve Differential Equations ***full example***
9:30
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
This equation blew my mind // Euler Product Formula
17:04
Dr. Trefor Bazett
Рет қаралды 52 М.
Laplace Transform: First Order Equation
22:38
MIT OpenCourseWare
Рет қаралды 295 М.
Solving 8 Differential Equations using 8 methods
13:26
Dr. Trefor Bazett
Рет қаралды 17 М.
The Convolution of Two Functions  |  Definition & Properties
10:33
Dr. Trefor Bazett
Рет қаралды 300 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 216 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 765 М.
How Many Queens to BEAT Magnus?
15:39
iwantcheckmate
Рет қаралды 74 М.
so you want a HARD integral from the Berkeley Math Tournament
22:28
blackpenredpen
Рет қаралды 568 М.
Using Laplace Transforms to Solve Differential Equations
19:27
Houston Math Prep
Рет қаралды 285 М.
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН