you are the best person i have seen explain this concept so easy and precise i love it .
@DrMathaholic Жыл бұрын
Thank you.. glad to hear that🙏😊
@_flexion2 жыл бұрын
Really well explained!! Thank you Sir
@DrMathaholic2 жыл бұрын
Thank you and welcome 🙂
@deborah3805 ай бұрын
Thank you for doing examples with nonzero constants and powers other than 1!
@DrMathaholic5 ай бұрын
Welcome:)
@jimmyhunnicutt19237 ай бұрын
you may have just saved my grade1 this is the first time I'm getting it, thank you!
@DrMathaholic7 ай бұрын
Welcome.. all the best 👍
@georgehinneh62779 ай бұрын
I love ❤ the hints you gave , it will be very helpful in mcq's
@DrMathaholic9 ай бұрын
😊👍
@lipansan9 ай бұрын
Thank you very much! Best explaning ever!
@DrMathaholic9 ай бұрын
Thank you 😊
@LOLjerel7 ай бұрын
My professor is making us do both separately but this looks way easier lol Thank you!!
@mitra.1 Жыл бұрын
Sir what about these 2. Will these form a subspace? 1. {(x, y, z) : x + y = z} 2. {(x, y, z) : x = y^2
@DrMathaholic Жыл бұрын
1 is a subspace. 2 is not as it contains degree 2 term. For ex: (1,1) and (1,-1) satisfies the equation but their addition (2,0) does not satisfy the given equation. So addition fails..
@mrbleetoe Жыл бұрын
You are the best, thank you!
@DrMathaholic Жыл бұрын
Thank you for your kind words 😊😊
@whiteshadow5881 Жыл бұрын
W video, love it, saved it, i regret judging it because it used a chalkboard and came here last
@DrMathaholic Жыл бұрын
Glad to hear that.. All the best😊
@gauravdateer9931 Жыл бұрын
Sir your explanation is tooo good 💯🔥
@DrMathaholic Жыл бұрын
Thank you 😊
@BhagyashreeBhoomshetty4 ай бұрын
Thank you sir❤ Well explained 🙏
@DrMathaholic4 ай бұрын
@@BhagyashreeBhoomshetty thank you ..welcome 😊
@barakamtawa657110 ай бұрын
thanks dr mathaholic am understand you very very good thanks🙏🙏
@DrMathaholic10 ай бұрын
Very happy to hear that:)
@saimamanzoor2781 Жыл бұрын
Very very helpful vedio...thnkuu soo much
@DrMathaholic Жыл бұрын
Welcome 😊
@jayavaradhanp84052 жыл бұрын
Sir make more videos on real analysis it will be helpful for net preparation.
@DrMathaholic2 жыл бұрын
Yes sure.. I will definitely try..
@Icywings-v1b Жыл бұрын
Very much thankful
@DrMathaholic Жыл бұрын
Welcome 😊
@mathematicsbya.g9 ай бұрын
Thanks for the trick ❤
@DrMathaholic9 ай бұрын
Welcome :)
@craftmedia344811 ай бұрын
Sir I am confused on this question Show that the following subspace is corresponding to vector space R³ The set of plane passing through the origin {(x,y,z) | ax+by+cz=0 where a,b,c is a scalar}
@craftmedia344811 ай бұрын
Wether it is subspace or not Sir
@DrMathaholic11 ай бұрын
Try to show that 3 conditions are satisfied. 1. This set contains zero vector (0,0,0) bcoz when u replace x,y,z by 0,0,0 it satisfies the equation ax+by+cz=0. 2. Suppose (x1,y1,z1) and (x2,y2,z2) satisfies the equation ac+by+cz=0. Can you show that (x1+x2,y1+y2,z1+z2) also satisfies the equation? 3. Suppose (x1,y1,z1) satisfies the equation. Can you show that alpha(x1,y1,z1) also satisfies the equation? Where alpha is any real number.
@DrMathaholic11 ай бұрын
Let me know if u get stuck.
@DrMathaholic11 ай бұрын
@craftmedia3448 it's a subspace..
@craftmedia344811 ай бұрын
@@DrMathaholic ok Sir I try
@KWW9999 Жыл бұрын
You are a legend
@DrMathaholic Жыл бұрын
🙏😊
@sturkyturky97927 ай бұрын
Hello, was wondering if (x,y,z) in R^3, (4x - 9y)^2 = z^2 is a subspace, thank you
@DrMathaholic7 ай бұрын
Nope. As degree is not 1 so not a subspace. Take (1,0,4) and (0,1,9), these 2 points satisfy given equation but their addition (1,1,13) does not satisfy the given equation.
@sturkyturky97927 ай бұрын
@@DrMathaholic Shouldn't it be (0,-1,9) satisfies the equation? because if you use (0,1,9) you get -9^2 = 9^2, and then by using (0,-1,9) the addition is (1,-1,13) which satisfies: (4(1)-9(-1))^2 = 13^2 which becomes 4 + 9 = 13, 13 = 13?
@theresahfosuah38694 ай бұрын
@@sturkyturky9792since such an equation doesn’t satisfy all real numbers regarding closure under addition, it’s not a subspace
@mohitjain646021 күн бұрын
Very nice explained sir....🎉🎉🎉
@DrMathaholic21 күн бұрын
Thanks and welcome...keep watching 😊
@LightYagami-pw4wuАй бұрын
thanks sir
@103anushkasingh32 жыл бұрын
Very helpful video thanks sir!!😊
@DrMathaholic2 жыл бұрын
Glad to hear that.. welcome 😊
@top1malayalam1452 жыл бұрын
Thank you so much sir
@DrMathaholic2 жыл бұрын
Welcome :)
@sultanalajmi6089Ай бұрын
S={(x,y)| x=2y and 2x=y} is this subset in the subspace?
@DrMathaholicАй бұрын
@@sultanalajmi6089 yes, it's a subspace
@priyankas914 ай бұрын
Sir please explain this example:S={(x,y,z)/x≥y≥z},it is subspace or not
@DrMathaholic4 ай бұрын
No, Take x= (3,2,1) and scalar c= -1. Then x vector is in the set S but c*x is not in S. So scalar multiplication fails.
@mitra.1 Жыл бұрын
Sir what about this one (x, y, z) : x = y = z . Will this form a subspace?
@DrMathaholic Жыл бұрын
Yes, it forms a subspace.
@ecmrn Жыл бұрын
so helpful!
@DrMathaholic Жыл бұрын
Thank you 😊
@isurudilshan7172 Жыл бұрын
x^2 + y^2 + z^2 = 0. Sir can this be a subspace ? Seems like the only vector in this set is (0,0,0). So isn't it enough to form a subspace. The problem is confusing me. Btw your video is help me a lot..
@DrMathaholic Жыл бұрын
This is a singleton set.. {0} is always a subspace. We call it a trivial subspace..
@isurudilshan7172 Жыл бұрын
@@DrMathaholic thank u sir..♥️
@fayadhpm2 жыл бұрын
Thank you sir
@DrMathaholic2 жыл бұрын
Welcome:)
@tusharpersai5790 Жыл бұрын
in that sin x example it is not a vector space since it does not satisfy the vector addition property, so there is no point of checking whether it is a subspace or not? am i right sir
@DrMathaholic Жыл бұрын
Very right 👍👏
@mustakeemsheikh1854 Жыл бұрын
W={(x,y,z)}€R3/(y2=0)} so sir wheather this is sub space or not please tell And you're explanation is awesome ❤
@DrMathaholic Жыл бұрын
As y is a real number so y^2=0 implies that y=0. So ultimately the set is {(x,0,z) | x,z are real numbers}. This set is nothing but xz plane and hence its a subspace.
@DrMathaholic Жыл бұрын
Thank you 😊
@khadkabaniya4545 Жыл бұрын
Sir what about x^2+y^2-z^2=0. Will it form a subspace??
@DrMathaholic Жыл бұрын
No, (1,0,1) and (0,1,1) satisfy this equation but their addition is (1,1,2) which does not satisfy the given equation.. So addition property fails..u, v satisfies but u+v do not
@shwetashukla44022 жыл бұрын
Thanku Sir🙏
@DrMathaholic2 жыл бұрын
Welcome :)
@rajilakshmi3566 Жыл бұрын
{(a,b,c)}/a=b+c} please explain how it is subspace of R3
@DrMathaholic Жыл бұрын
Let (x,y,z) nd (a,b,c) belongs to given set. We have a=b+c and x=y+z. For addition, (x+a,y+b,z+c) we gave, x+a=y+z+b+c=y+b+z+c so (x+a,y+b,z+c) belongs to the set. Can you try for scalar multiplication?
@AbayR-yw4zzАй бұрын
Can we do the same method when there are x y z and w
@DrMathaholic29 күн бұрын
@@AbayR-yw4zz yes...
@gamerom93243 жыл бұрын
Sir can you tell which playlist we have to follow for 1 st chapter and its basics for ode and MVC plz
@DrMathaholic3 жыл бұрын
Hi Here is the Playlist for unit I. Enjoy:) kzbin.info/aero/PLwaXU7G6UrbefJGT7WXm-ONSzcNoR4foC
@gamerom93243 жыл бұрын
@@DrMathaholic tysm sir😁
@DrMathaholic3 жыл бұрын
@@gamerom9324 :)
@gameparty3704 Жыл бұрын
a savior
@tanvikadahiya37512 жыл бұрын
Please explain sir.... W = {( x, 2y, 3z) : x,y,z belongs to R} Will W be a subspace of R³
@DrMathaholic2 жыл бұрын
Yes... because W is x(1,0,0)+y(0,2,0)+z(0,0,3)= span{(1,0,0), (0,2,0), (0,0,3) }...
@DrMathaholic2 жыл бұрын
From above one can see that W=R^3. So yes, W is a space..
@tanvikadahiya37512 жыл бұрын
Thank you sir
@DrMathaholic2 жыл бұрын
@@tanvikadahiya3751 welcome..
@jayavaradhanp84052 жыл бұрын
How to check solution set of differential equation form a vector space or not
@DrMathaholic2 жыл бұрын
Check this video.. I have given the solution kzbin.info/www/bejne/g2jIf3qDeZKMe8U
@fabnavc46912 жыл бұрын
Thank u sir
@DrMathaholic2 жыл бұрын
Welcome :)
@malaykhare10062 жыл бұрын
sir if there is a set C2(complex) over R2, then it will be a vector space right?
@DrMathaholic2 жыл бұрын
R2 is not a field. So c2 over R2 do not have VS structure. C2 over R is VS
@malaykhare10062 жыл бұрын
@@DrMathaholic okay sir thank you
@ArnavDeshmukh-f7e Жыл бұрын
W ={ (x1,x2,x3)/x1=x2} is it a subspace of W?
@DrMathaholic Жыл бұрын
Yes, it's a subspace..
@olivierdebruijn8704 Жыл бұрын
hank you for the very nice explanation. Will this form a subspace: W1={(x,y)∈R^2 |xy≥0}⊂R^2?
@DrMathaholic Жыл бұрын
Welcome.. No, it won't. Take (0,1) and (-1,0) both are in W1 but when u add them, its (-1,1) which is not in W1 as product of 1 and -1 is not >=0
@olivierdebruijn8704 Жыл бұрын
@@DrMathaholic thank you for your very fast respone! I have another question, is it correct that W3 ={(x,y,z)∈R3 | ax+by+cz=d} is a subspace in R3 for all values of a,b,c and d=0?
@DrMathaholic Жыл бұрын
@olivierdebruijn8704 welcome .yes , when d is 0, its plane passing through origin. Hence it do forms a subspace..
@KeketsiFrancisSebapo4 ай бұрын
how about this ,,, V = a 1 b c : a, b ∈ R under the usual matrix operations.
@DrMathaholic4 ай бұрын
No. Because this set does not contain the zero vector, which is zero matrix.
@kukuyiehalem63915 ай бұрын
"Show that W = {(x, y, z)|x = y and 2y = z} is a subspace of IR³." Sir is this a subspace?
@DrMathaholic5 ай бұрын
Yes.. all terms of Linear and there is also no product of variables and there is no constant. So yes it's a subspace. Other way, W={ (x,x,2x) / x belongs to R}. Since y=x and z=2y=2x . So W is span of (1,1,2). So W is a subspace.
@ektakesharwani81152 жыл бұрын
Sir your explanation is very nice please provide some important questions of group theory related uppsc exam
@DrMathaholic2 жыл бұрын
Thank you.. Well, I dont have any such collection but I am sure you will get it online... All the very best...
@rishirajbehera71838 ай бұрын
x = 5y does it forms a subspace?
@DrMathaholic8 ай бұрын
Yes...
@rishirajbehera71838 ай бұрын
Sir there's a question which I'm not able to understand. It says, "Explain why no list of six polynomials is linearly independent in P4?" @@DrMathaholic
@DrMathaholic8 ай бұрын
@@rishirajbehera7183 see if this video helps:: kzbin.info/www/bejne/p5y1m4Z6f8tgm5Y
@DrMathaholic8 ай бұрын
@rishirajbehera7183 If V is a space of dimension n then you take any subset with more than n elements, it will always be linearly dependent. Here P4 has dim 5, so any set with more than 5 elements will always be dependent. This is due to- A set B is a basis if and only if it is maximal linearly independent set.
@rishirajbehera71838 ай бұрын
Thank you so much sir :) @@DrMathaholic
@ankitdadarwal192 Жыл бұрын
If degree is same on both side then that is subspace
@DrMathaholic Жыл бұрын
I didn't get the question.. Set S={ p(x) | deg(p(x)) = what?? } What is the set S?
@sruthisaravanan82sruthisar15 Жыл бұрын
{(x,y,z) belongs to V: x+y+z=0} sir this is Subspace or Not
@sruthisaravanan82sruthisar15 Жыл бұрын
Sir plz reply
@DrMathaholic Жыл бұрын
Yes..it's a subspace..its a plane passing through origin
@lordbryann Жыл бұрын
the vector satisfies the equation, ggggg thanks
@ujjwalmahajan75812 жыл бұрын
Hello sir I am having my LA ESE on Monday, tell me some important concepts and questions so that I can pass the exam...please sir....I am kindaa scared :{ I am from COEP 1st sem
@DrMathaholic2 жыл бұрын
Be relax.. see the videos n also read the same topic from text book. After that see solved examples from text book and then try to solve problems from tutorial sheet. If you get stuck then ask me here. After this, if u get time then go to exercise problems from textbook
@ujjwalmahajan75812 жыл бұрын
@@DrMathaholic ok sir thank you for the guidance
@DrMathaholic2 жыл бұрын
@@ujjwalmahajan7581 all the best..
@ujjwalmahajan75812 жыл бұрын
@@DrMathaholic :)
@BirhanuDejen-qy3xd Жыл бұрын
You are uniqe go on and tank you
@DrMathaholic Жыл бұрын
Thank you and welcome 🙂
@srinathshrestha3899 Жыл бұрын
s = {{x,y,z,} belongs to R^3 : x+y=0 or y-z=0}
@DrMathaholic Жыл бұрын
Yes, it forms a subspace. We have, x=-y and y=z. Thus, S={( x,-x,-x) } I.e. s is a 1 dimension subspace of R^3
@srinathshrestha3899 Жыл бұрын
@@DrMathaholic sir ! This questions was in our mid sem exam , and the it's not a subspace because (1,-1,0) and (0,1,1) are counter example
@DrMathaholic Жыл бұрын
@Srinath Shrestha oh, it's "or" in between.. I thought its "and"
@DrMathaholic Жыл бұрын
@@srinathshrestha3899 Under the "or" condition, it's not a subspace..whereas under "and" it's a subspace..
@DrMathaholic Жыл бұрын
So whenever there is an or condition between more than 1 equation then it's never a subspace..