Tutorial 120 - Applying trained U-Net model to segment large images

  Рет қаралды 5,136

ZEISS arivis

ZEISS arivis

Күн бұрын

Пікірлер: 24
@samirashemirani8529
@samirashemirani8529 Жыл бұрын
I can't describe how much your "U-Net Semantic Segmentation" helped me! They are all super super superrr helpful! Thank you for sharing your knowledge in this way. So clean, clear, organized and so so so ..! Thanks again!
@maxmaximus1503
@maxmaximus1503 3 жыл бұрын
A video about crop patches compared with random patches should be interesting. Since random patches does not crop evenly, instead it randomly crop with multiple instances, meaning each pixel have a chance of being present in multiple crops, then using Voting to classify the pixel. Random crop is interesting because some pixels in the edges of each crop might require further information "context" of it's surrounding pixels in-order to classify itself, thus having multiple random crops ensures that the prediction of each pixel is based on the vote of multiple random patches with different surroundings "context".
@ZEISS_arivis
@ZEISS_arivis 3 жыл бұрын
At the end you want a segmentation result of the large image. So you need to segment every pixel in the image anyway. I do not see any advantage of random crop during prediction. It does make sense during training as it helps generalize the model better. The smooth blending operation, used in this video, performs image transformations and segments the transformed patches, then finally blends to average all the predictions. In a way, this is similar to your proposal. Your thinking is in the right direction, thanks for the comment.
@Mai-he2hv
@Mai-he2hv 3 жыл бұрын
@@ZEISS_arivis Thanks
@JwanKAlwan
@JwanKAlwan 3 жыл бұрын
you effort is highly appreciated .. thanks a lot
@ZEISS_arivis
@ZEISS_arivis 3 жыл бұрын
It's my pleasure
@godomotives7171
@godomotives7171 2 жыл бұрын
Sir, you are doing a great job guiding us with such highly valuable guidance. I need help quickly, how can we use this technique you explained in this video to classify large histology images? Not segmentation but classification? Please help
@anelm.5127
@anelm.5127 Жыл бұрын
Just a hint regarding matplotlib colors. Add vmin and vmax param where vmin is the min class integer and vmax is the max class integer of your segmentation mask. This will keep the colors constant.
@ZEISS_arivis
@ZEISS_arivis Жыл бұрын
Thanks for the tip
@ankansharma4897
@ankansharma4897 2 жыл бұрын
Great video. But I am bit confused about overlap tile strategy in Unet paper. Can anyone give me some clarity over it
@tilkesh
@tilkesh 2 жыл бұрын
Thank you very much.
@anelm.5127
@anelm.5127 Жыл бұрын
I tried to make this run using pytorch tensors but it didn't work
@harrislee6962
@harrislee6962 3 жыл бұрын
Great job! Thanks!
@ZEISS_arivis
@ZEISS_arivis 3 жыл бұрын
Glad you liked it!
@tiwalademodupeusman3452
@tiwalademodupeusman3452 2 жыл бұрын
How do i work with this 564x584 image size
@tiwalademodupeusman3452
@tiwalademodupeusman3452 2 жыл бұрын
How do i divide this image into patches when tje height and width of the image are not equal
@mehranghandehari3010
@mehranghandehari3010 3 жыл бұрын
the file "smooth_tiled_predictions.py" does not exist in the repo.
@ZEISS_arivis
@ZEISS_arivis 3 жыл бұрын
Thanks for alerting me about the missing file. It has been uploaded. Here is the direct link: github.com/bnsreenu/python_for_image_processing_APEER/blob/master/smooth_tiled_predictions.py
@meryemouadi4904
@meryemouadi4904 3 жыл бұрын
Thank you so much for your efforts 😍😍
@ZEISS_arivis
@ZEISS_arivis 3 жыл бұрын
My pleasure 😊
@godomotives7171
@godomotives7171 2 жыл бұрын
Great teachings and codes 👍🏽, need help with this: IS IT TOTALLY OKAY TO RESIZE VERY LARGE IMAGES SAY 10000×10000 TO 128×128...YOUR RESPONSE WILL BE HIGHLY APPRECIATED.
@godomotives7171
@godomotives7171 2 жыл бұрын
For classification purposes?
@solomonadeyemi53
@solomonadeyemi53 2 жыл бұрын
outstanding work sir........I got this error NonUniformStepSizeError: Unpatchify only supports reconstructing image with a uniform step size for all patches. However, reconstructing 17 x 256px patches to an 4408 image requires 259.5 as step size, which is not an integer. Please help
@ZEISS_arivis
@ZEISS_arivis 2 жыл бұрын
I guess the error is clear enough where it says you need to define an output size that is a result of integer step size.
Labeling images for semantic segmentation using Label Studio
27:08
DigitalSreeni
Рет қаралды 64 М.
Smart Sigma Kid #funny #sigma
00:33
CRAZY GREAPA
Рет қаралды 37 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 2,2 МЛН
How I animate 3Blue1Brown | A Manim demo with Ben Sparks
53:41
3Blue1Brown
Рет қаралды 1,1 МЛН
204 - U-Net for semantic segmentation of mitochondria
24:34
DigitalSreeni
Рет қаралды 35 М.
Learn Machine Learning Like a GENIUS and Not Waste Time
15:03
Infinite Codes
Рет қаралды 191 М.
Tutorial 118 - Binary semantic segmentation using U-Net (in Keras)
23:44
Organize Your Home With These Must-Have Smart Gadgets #shorts  Pt-2
0:22
Huawei is two steps ahead...💀
0:39
GoodBoyShaggy
Рет қаралды 15 МЛН