Tutorial - Introduction to Ant Colony Optimization Algorithm n How it is applied on TSP

  Рет қаралды 66,122

Gopal Prasad Malakar

Gopal Prasad Malakar

Күн бұрын

What is ant colony optimization algorithm?
How it is applied in case of Travelling salesman Problem (TSP)?
A concept demo - concept visualization : of ant colony optimization on TSP problem
Pseudo code of execution

Пікірлер: 45
@Mehrdad995
@Mehrdad995 6 жыл бұрын
God bless you brother, thanks a lot
@bujnyyy
@bujnyyy 4 жыл бұрын
Really nice tutorial
@rajsahu4644
@rajsahu4644 4 жыл бұрын
Video is worth the time. Thanks alot
@chaimaelaissaoui6870
@chaimaelaissaoui6870 Жыл бұрын
thank you very much!
@mahimahans111
@mahimahans111 4 жыл бұрын
Nice video
@hadjer168
@hadjer168 3 жыл бұрын
What is the value of Q ? If it is a constant can we attribute any number to it from [0,1] ?
@prateeksoni2294
@prateeksoni2294 5 жыл бұрын
Good one brother!!
@mahbubalam6285
@mahbubalam6285 2 жыл бұрын
Have you published any paper on ant colony optimization??
@MuhammadAwais-yn3iy
@MuhammadAwais-yn3iy 5 жыл бұрын
Niicely elaboratedgod bless u
@hadjer168
@hadjer168 3 жыл бұрын
What did you said in 11:11 please ? all the distances .... ???
@gopalprasadmalakar12
@gopalprasadmalakar12 3 жыл бұрын
Hadjer, the algorithm puts the pheromone level which is inverse of the total distance. So in one case, it will be divided by 45 and in another case, it will be divided by 55. The smaller distance path will have more pheromone. Regards
@hadjer168
@hadjer168 3 жыл бұрын
@@gopalprasadmalakar12 thank you so much
@trishanksingh6110
@trishanksingh6110 4 жыл бұрын
How do you guarantee that the pheromone on the edge will not become 0? Under what settings of the ant algorithm do you get the length of the best path closest to the result of the delta tao full search?
@gopalprasadmalakar12
@gopalprasadmalakar12 Жыл бұрын
Sorry, somehow the question got skipped. It is quite possible that some edge may have zero (or negligible) pheromone.
@AndystanSmith
@AndystanSmith 4 жыл бұрын
Helpful! Thanks!
@kustomweb
@kustomweb 7 жыл бұрын
Excellent
@qusaiteqlas3728
@qusaiteqlas3728 7 жыл бұрын
what does the Q mean ? i could not get it.
@pintuchoudharyalbert
@pintuchoudharyalbert 7 жыл бұрын
Q is a constant and Lk is the total distance travel by ant k in the graph
@zeeshanahmadkhalil8920
@zeeshanahmadkhalil8920 7 жыл бұрын
Then what is the value of Q? Please tell me. I have understood and noted your whole lecture. Only confusion is that what is the value of Q.
@pathshalatutionclasses864
@pathshalatutionclasses864 6 жыл бұрын
+Moon Khan (Zeeshan) plz help me
@tomasfernandez7481
@tomasfernandez7481 6 жыл бұрын
I've seen Q=1. See link: www.scholarpedia.org/article/Ant_colony_optimization
@dshanthi01
@dshanthi01 5 жыл бұрын
In my code I have taken q value as 0.0001, because q value should less than 1.
@karannchew2534
@karannchew2534 2 жыл бұрын
9:30 T=Q/L. What is Q please?
@gopalprasadmalakar12
@gopalprasadmalakar12 Жыл бұрын
Apologize for reverting late. Q is just constant. A bigger value of Q means changes are rapid. Regards
@karannchew2534
@karannchew2534 Жыл бұрын
@@gopalprasadmalakar12 No problem. Thanks very much!!
@ryanbryson2965
@ryanbryson2965 3 жыл бұрын
thank you :)
@sungmingan3238
@sungmingan3238 4 жыл бұрын
Great explanation, thank you.
@alemozukum7031
@alemozukum7031 6 жыл бұрын
thanks for the video. Can you please upload tutorial on application of ACO in vehicle routing problem.
@PoisongamingViper
@PoisongamingViper 5 жыл бұрын
Anyone has the ppt used in it?
@ankitgupta6697
@ankitgupta6697 5 жыл бұрын
Can anybody help me in Ant Colony Optimization Algorithm for Classification Problem
@pitehrhurtado
@pitehrhurtado 4 жыл бұрын
I can help you
@ankitgupta6697
@ankitgupta6697 4 жыл бұрын
@@pitehrhurtado I am working on Ant Miner. Can you give me your email id so that we can talk about it
@Salamandrescu
@Salamandrescu 4 жыл бұрын
I have some questions: 1. On the first iteration, where the pheromone levels on the trails is 0, do ants choose the shortest city to visit? 2. The relation between alpha and beta is alpha = 1 - beta? 3. Can ants start from the same city? If so, the ants starting from the same city will heavily increase the tour from the first iteration, choosing only the shortest city to visit
@gopalprasadmalakar12
@gopalprasadmalakar12 4 жыл бұрын
Jitzal, let me answer one by one. Answer to 1- Not a real ant but in our situation, an artificial ant will have a higher probably of choosing shorter path based on visibility (1/ distance) 2- in general people do that way. However it is not mandatory. 3- No. Regards
@Sanyat100
@Sanyat100 6 жыл бұрын
Best tutorial
@NeerajArora007
@NeerajArora007 6 жыл бұрын
You explain in very easy way. Thanks for this video. Can you explain in contrast to task scheduling algorithms in cloud environment. Also explain some other meta heuristics algorithms like cuckoo algorithm, firefly algorithm etc. Great work!!!👍
@aravind1772
@aravind1772 7 жыл бұрын
thanks sir :)
@Komal12196
@Komal12196 6 жыл бұрын
can i get ppts of this video
@platio101
@platio101 5 жыл бұрын
*Ants can figure out the shortest path
@alibaltschun2302
@alibaltschun2302 6 жыл бұрын
thanks
@ghaida5340
@ghaida5340 6 жыл бұрын
can you give me the reference please
@manish19sharma
@manish19sharma 6 жыл бұрын
Hi Thanks for video . please share code
@nirajshukla4887
@nirajshukla4887 5 жыл бұрын
Anyone have video on dragonfly algorithm? pls send me
Inspiration of Ant Colony Optimization
19:39
Ali Mirjalili
Рет қаралды 50 М.
Solving the Travelling Salesman Problem using Ant Colony Optimization
10:03
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
UFC 310 : Рахмонов VS Мачадо Гэрри
05:00
Setanta Sports UFC
Рет қаралды 1,2 МЛН
How the Ant Colony Optimization algorithm works
22:26
Ali Mirjalili
Рет қаралды 216 М.
What exactly is an algorithm? Algorithms explained | BBC Ideas
7:54
All Machine Learning algorithms explained in 17 min
16:30
Infinite Codes
Рет қаралды 578 М.
Coding Challenge #35.1: Traveling Salesperson
22:55
The Coding Train
Рет қаралды 290 М.
Genetic Algorithms Explained By Example
11:52
Kie Codes
Рет қаралды 359 М.
GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem
19:15
How to Remember Everything You Read
26:12
Justin Sung
Рет қаралды 4 МЛН
Particle Swarm Optimisation
23:48
Churchill CompSci Talks
Рет қаралды 31 М.
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН