UK Integration Bee 2024 #9

  Рет қаралды 630

owl3

owl3

Күн бұрын

Пікірлер: 17
@doronezri1043
@doronezri1043 22 күн бұрын
Perfecto👏👏👏 Loved the didactic step-by-step approach🍻
@owl3math
@owl3math 22 күн бұрын
and thank you for the idea! :) 👍👍👍
@DihinAmarasigha-up5hf
@DihinAmarasigha-up5hf 22 күн бұрын
Interestingly enough...you could also use feynman's technique by letting I (t) = the integral given but with e^(-xt) replacing e^(-x)( where t>0).....then by differentiating twice and integrating twice and letting t =1 we get the answer 4ln4 -3 = ln 256 -3
@owl3math
@owl3math 22 күн бұрын
Nice! That was the way I did the other one I mentioned at the beginning of the video. I think it was this one: kzbin.info/www/bejne/amq1aqihrZV1ZpIsi=7mrWFybP69ScedNn
@DihinAmarasigha-up5hf
@DihinAmarasigha-up5hf 22 күн бұрын
@owl3math yup exactly....
@DihinAmarasigha-up5hf
@DihinAmarasigha-up5hf 21 күн бұрын
@@owl3math for your next integral video can you solve the integral of (ln (cos x))^2 from zero to pi/2...try it using complex analysis the contour and the final result is really nice...
@owl3math
@owl3math 21 күн бұрын
@@DihinAmarasigha-up5hf - sorry I generally can't take requests but I will keep it in mind for some day in the future.
@slavinojunepri7648
@slavinojunepri7648 21 күн бұрын
Fantastic
@owl3math
@owl3math 21 күн бұрын
thanks Slavino!
@Vengeance-yb8lm
@Vengeance-yb8lm 19 күн бұрын
do you know if the integral of 0 to infinity of e^-(x+1/x)^2 is possible, or have you done a vid on it ?
@owl3math
@owl3math 19 күн бұрын
Good one! Not too hard. It's a nice variation on the Gaussian integral. I think i want to do a video.
@MathCastt
@MathCastt 21 күн бұрын
Where do you find these integrals? I sat the UK int bee 2024 this wasn't on it or is it a different competition?
@owl3math
@owl3math 21 күн бұрын
Hi. I got these for UK 2024 here: www.scribd.com/document/703490462/UK-Integration-Bee-Practice-DUTIS-and-Double-Integrals
@toadjiang7626
@toadjiang7626 21 күн бұрын
Or, you can just use the Gamma Function. I=lim(s to 0) int_(0 to inf) e^(-x)*x^(s-2)*(3x-1+e^(-3x))dx, int_(0 to inf) e^(-x)*x^(s-2)*3x dx= 3*Gamma(s), int_(0 to inf) e^(-x)*x^(s-2)dx=Gamma(s)/(s-1), int_(0 to inf) e^(-x)*x^(s-2)*e^(-3x) dx= 4^(1-s)*Gamma(s)/(s-1), so I=lim(s to 0) (3+1/(1-s)-4^(1-s)/(1-s))*Gamma(s), when s approachs to 0, Gamma(s)=1/s, 1/(1-s)=1+s, 4^(1-s)/(1-s)=4+4*(1-ln4)s, so I=4ln4-3. You can also use the same method to solve the other integral you mentioned.
@owl3math
@owl3math 21 күн бұрын
Hi. I follow you up to this point: I=lim(s to 0) (3+1/(1-s)-4^(1-s)/(1-s))*Gamma(s) but then this is an indeterminate form. How did you evaluate this to 4ln4-3?
@toadjiang7626
@toadjiang7626 21 күн бұрын
@owl3math That indeterminate form is easy to evaluate using series expansion. First, you need to know the series expansion of Gamma(s) at s=0, which is Gamma(s)=1/s-r+O(s), where r is Euler-Mascheroni constant, but here we only need the first term, i.e Gamma(s)=1/s, because all the other terms will result to 0 anyway. And Gamma(s)=1/s when s approachs to 0 is easy to prove using s*Gamma(s)=Gamma(s+1), since s approachs to 0, s+1 approachs to 1, Gamma(s+1) also approachs to 1, so Gamma(s)=1/s. Now all you need is the Taylor expansion of 3+1/(1-s)-4^(1-s)/(1-s), and since all the s^2 terms and higher terms will result to 0, you'll only need the constant term and s term, which is very easy to calculate. which means 1/(1-s)=1+s, 4^(-s)=1-s*ln4, 4^(1-s)/(1-s)=4*(1-s*ln4)*(1+s)=4+4*(1-ln4)s, 3+1/(1-s)-4^(1-s)/(1-s)=(4ln4-3)*s, so the indeterminate form is equal to 4ln4-3.
@owl3math
@owl3math 20 күн бұрын
@@toadjiang7626 nice! Thanks for the explanation :) 👍
UK 2024 #8 Alternative method / Trick
4:30
owl3
Рет қаралды 611
Can you do it in 4 minutes???
18:01
owl3
Рет қаралды 1,2 М.
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,9 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
More complicated than it looks???
7:40
Owls Math
Рет қаралды 1,5 М.
The Way It Simplifies Feels ILLEGAL...
5:22
dy d Oscar
Рет қаралды 3,3 М.
Sum from 1 to infinity of 1/(k^2+1)
7:16
mathemagical
Рет қаралды 7 М.
Great shortcut for simplifying integrals!
8:29
owl3
Рет қаралды 782
One trick makes this one easy
3:13
Owls School of Math
Рет қаралды 424
Can I use Geometric series when x goes to infinity?
11:09
Hardy's Integral
13:47
Michael Penn
Рет қаралды 24 М.
finding the last two digits
9:10
Michael Penn
Рет қаралды 9 М.
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 36 МЛН