Thanks Umar for such a wonderful tutorial! I've been eyeing this paper for a while!
@edsonjr69728 ай бұрын
Your videos are literally the only ones with 1hr+ I would ever watch on KZbin. Keep going mate, extremely high quality content 👏🏽👏🏽
@boredcrow7285Ай бұрын
Ive learnt so much from your videos, Ive been following you for about a year now starting from the diffusion implementation and the quality of content you post in here is insane. Thank you so much Jamil, people like you are the reason why AI community is so open and free for anybody to learn and explore.
@AdmMusicc8 ай бұрын
You're on a mission to make the best and friendliest content to consume deep learning algorithms and I am all in for it.
@nokts38238 ай бұрын
Thanks a lot for making this accessible for people outside the field, for which reading and understanding these papers is quite tough. Thanks to you I'm able to stay slightly more up to date with the crazy quick developments in ML!
@MrNathanShow8 ай бұрын
The intro of a basic linked up linear layers was so well done and really makes this introduction friendly!
@kashingchoi5644 ай бұрын
Thank you for bringing me into the world of neural network. Your videos always make difficult topics become easier by interconnecting relevant concepts that greatly enhance the understanding to follow your mindset. I hope I can learn more knowledge from you and apply them into my life goal some day.
@BooleanDisorder6 ай бұрын
I love that this research area develops fast enough that we need dedicated channels to explain new developments.
@franciscote-lortie86808 ай бұрын
Incredibly clear explanations, the flow of the video is also really smooth. It’s almost like you’re telling a story. Please keep making content!!
@mohamedalansary25428 ай бұрын
Clearly explained and very valuable content as always Umar. Thank you!
@ChadieRahimian7 ай бұрын
Thanks for the amazing explanation!
@manumaminta61318 ай бұрын
Your videos help me (a grad student) really understand difficult, often abstract concepts. Thank you so much... I'll always support your stuff!
@xl0xl0xl08 ай бұрын
Wow this was a super clear an on-point explanation. Thank you, Umar.
@odysy51798 ай бұрын
Fantastic explanation!
@AlpcanAras8 ай бұрын
This is life changing, in my opinion. Thank you for the efforts on the videos!
@luigigiordanoorsini59808 ай бұрын
Ho appena letto la piccola bio del tuo canale, spero di non essere offensivo dicendo che adesso capisco perché il tuo ottimo inglese mi sembrasse comunque molto familiare. Ad ogni modo ti ringrazio enormemente per il tuo contributo hai spiegato tutta la teoria in un modo, a mio avviso, estremamente chiaro e soprattutto coinvolgente. Ti prego continua così, di nuovo un enorme grazie e complimenti per il tuo contributo alla scienza
@umarjamilai8 ай бұрын
Grazie a te per aver visitato il mio canale! Spero di pubblicare più spesso, anche se per fare contenuti di qualità ci vogliono settimane di studio e preparazione. In ogni caso, spero di rivederti presto! Buon weekend
@luigigiordanoorsini59808 ай бұрын
@@umarjamilai Avevi già guadagnato un iscritto adesso hai guadagnato un fan. Ahahahahah
@bensimonjoules44028 ай бұрын
Amazing content, thanks! I'm very excited about the continual learning properties of these networks.
@MirjanOffice8 ай бұрын
Hello Umar, this video is my best birthday gift I have ever received, thanks a lot :)
@JONK46358 ай бұрын
Extremely clear explanation and content here! Very helpful. I am happy that you came from PoliMI as well :) keep it up!
@Adityagupta-vk9um6 ай бұрын
i don't comment on YT but man oh man, this man is love. Too good of an explanation.
@seelowst8 ай бұрын
Having a such good teacher is so adorable, i wish i could be your students.
@umarjamilai8 ай бұрын
哪里哪里啊,谢谢你的赞成!
@seelowst8 ай бұрын
@@umarjamilai 太棒了,您还会中文👍
@umarjamilai8 ай бұрын
@@seelowst 我就是刚刚从中国来的,在中国主了4年了,现在回欧洲了。
@seelowst8 ай бұрын
@@umarjamilai 我从没离开过我的城市,我希望像您一样👍
@stacks_70608 ай бұрын
One of the best math videos I’ve watched on KZbin
@brandonheaton61977 ай бұрын
Best explanations of splines i have seen. Legit 100%
@zaevi68558 ай бұрын
crazy that it took me an hr video to understand that its the (control points) being trained on the spline graph vs weights with MLPs and CNNs, thank you!
@johanvandermerwe76878 ай бұрын
I saw this paper on papers with code, and thought to myself I wonder if Umar Jamil will cover this. Thanks for your effort and videos!
@MuhammadrizoMarufjonov-os5fv8 ай бұрын
Thanks for including prerequisites
@anirudh5148 ай бұрын
Thanks for the crystal clear explaination!!
@balachanders63506 ай бұрын
Great explanation and underrated also waiting for "Implementation of KAN from scratch" video
@cavidanabdullayev45333 ай бұрын
It is a amazing resource for KANs. Thank you so much 🙂
@andreanegreanu87508 ай бұрын
Very clear, well explained, top notch!
@emiyake8 ай бұрын
Thanks!
@vanerk_Ай бұрын
Great, as always, thank you sir!
@alfredmanto54878 ай бұрын
Thanks
@MuhammadMuzzamil-ki4he8 ай бұрын
Thank you for such great and detailed explanation.
@MasoudAminzadeh4 ай бұрын
It was fantastic. continue my friend.
@harveyp.19495 ай бұрын
Awesome explanation!!!
@enricovompa18768 ай бұрын
Thank you for making this video!
@mychan-lu5iv3 ай бұрын
Amazing! Thank you very much for this.
@anmolmittal98 ай бұрын
This is really great! Power to you!!🚀
@ansonlau70408 ай бұрын
Thankyou Jamil, what a cool video
@howardmeng2568 ай бұрын
Amazing video! Thanks a lot !
@lethnisoff8 ай бұрын
Your explanations are the best, thank you so much😘🤗
@ScottzPlaylists8 ай бұрын
High quality explanations.. Thanks.
@paolobarbieri74837 ай бұрын
Thank you for what you do, you are amazing.
@kmalhotra30968 ай бұрын
Hats off, what an awesome video!!!
@artaasadi94978 ай бұрын
that is very useful, informative and interesting! Thanks a lot!
@ozgunsungar93708 ай бұрын
awesome, easy to follow even person dont know anything :)
@vaadewoyin8 ай бұрын
Cant wait to watch this, saved! Will comment again when i actually watch it..😅
@DiegoSilva-dv9uf8 ай бұрын
Valeu!
@filippobargagna8 ай бұрын
Thank you so so much for this amazing content.
@ezl1008 ай бұрын
thanks Umar. Very nice explanation. Just 2 questions : 1 - Does it mean we can specify different knots per edge? 2 - I am not understanding how the backpropagation will work. Let's say we calculate the gradient from h1. It will update phi 1,1 and phi 1,2 but how the learning process will impact the knots to the desired value?
@jeunjetta8 ай бұрын
I think KAN will be the catalist of a significant tipping point in science. I want to apply this to power system grids and replace existing dynamic models with ones made from PMU data using KAN
@zzduo-w2p4 ай бұрын
Thank you for your excellent explainations 🤩🤩🤩🤩
@binfos74346 ай бұрын
Amazing! Just wanted to ask if I should expect an implementation of this concept on this channel?
@GUANGYUANPIAO8 ай бұрын
awesome explanation
@prathamshah20588 ай бұрын
Thank-you so much for explaining the paper, it is so easy to understand now, btw can you also make a hands on video with the kan package developed by mit which is based off pytorch.
@hajaani64178 ай бұрын
You’re fantastic, mate.
@samadeepsengupta8 ай бұрын
Great Content !!
@subhamkundu50438 ай бұрын
Hey @Umar, great content as always. Looking forward to a KAN implementation video from scratch. Also I think in 31:01 there is a minor language mistake. I think it will be for using a quadratic Bspline curve rather than quadratic Bezier curve
@Lilina34566 ай бұрын
You are amazing, thank you!
@wolfie61758 ай бұрын
Good video, quality content.
@arupsankarroy87228 ай бұрын
Sir, you are great..💙💙
@AD-zj7ckАй бұрын
Thanks for the amazing video. Can you make video explaining and proving the universal approximation theorem?
@ashithen18336 ай бұрын
Much Thanks for this video
@RiteshBhalerao-wn9eo8 ай бұрын
Amazingg explanation !
@imanghotbi46516 ай бұрын
Is the explicit form of the obtained functions accessible after training the model and performing L-1 regularization? Is there a repository and code for it already?
@RomanLi-y9c8 ай бұрын
This is awesome!
@coolkaran12348 ай бұрын
You are savior, without you mortals like me would be lost in the darkness!!!
@sergiorego63218 ай бұрын
Phenomenal! Thank you :)
@mohamedessam31545 ай бұрын
Thanks for the video. For the first feature x0,1 we have 5 features for the same input x0,1 how the output is going to be different although they used the same input, grid size, degree and knot vector?
@yuningliu63007 ай бұрын
at 2:21 you mentioned the documentation. where can I find it ?
@karanjakharАй бұрын
Nice explanation. Thank you. Please can you implement it also like you did for other videos.
@pabloe18028 ай бұрын
An implementation video will be awesome
@JuliusSmith8 ай бұрын
Excellent video, thanks! At the end, I _really_ wanted to see an illustration of the relatively "non-local" adaptation of MLP weights. Can that be found somewhere?
@danielegiunchi97418 ай бұрын
brilliant video!
@willpattie5818 ай бұрын
One thing I didn’t catch: how are the functions tuned? If each function consists of points in space and we move around the points to move the B spline, how do we decide to move the points? Doesn’t seem like backprop would work in the same way.
@umarjamilai8 ай бұрын
The same way we move weights for MLPs: we calculate the gradient of the loss function w.r.t the parameters of these learnable functions and change them in the opposite direction of the gradient. This is how you reduce the loss. We are still doing backpropagation, so nothing changed on that front compared to MLPs.
@dhackmt8 ай бұрын
i loved it sir .
@ntej79276 ай бұрын
Excellent.
@p4ros9608 ай бұрын
bruh so good. Keep it up!
@faiqkhan75458 ай бұрын
Umar bhai you the great
@girandoconandrea5 ай бұрын
Ciao Umar. Innanzitutto grazie mille del tuo lavoro, sei una fonte di conoscenza infinita per come esponi gli argomenti. Ho seguito interamente questo video ed ho dei dubbi. All'inizio, quando introduci le b-splines si parla di control point in quanto punti che vengono dati come input e per i quali viene creata una curva che passa vicina ad essi secondo la base function. Successivamente, quando viene introdotto il network, si dice che ad essere trainate sono le funzioni ed in particolare i control points. Cosa vuol dire questo? I control points non sono gli input che diamo al modello e quindi i nostri dati che vogliamo approssimare ad una funzione? Sarei grato se mi chiarissi questo concetto. Grazie mille e buon lavoro :)
@umarjamilai5 ай бұрын
L'unico parametro che definisci è il numero di control point (che ne determina la granularità, ovvero quanto "precisa" deve essere l'interpolazione). Compito di una rete neurale è "apprendere" i parametri di una funzione complessa per ridurre una funzione di costo (loss function). Quali sono i parametri che si allenano? La posizione dei control point, non il loro numero, che invece è deciso a priori. È come quando cerchi di interpolare dei punti usando un polinomio: prima scegli il grado del polinomio (quante potenze della X), poi usando un qualche algoritmo "alleni" i coefficienti di ciascuna potenza. Spero ora sia più chiaro
@shubhamrandive76848 ай бұрын
Great explanation. What app do you use to create slides ?
@umarjamilai8 ай бұрын
PowerPoint + a lot a lot a lot a lot a lot of patience.
@satviknaren96818 ай бұрын
Please do post more ! please do more videos !
@グワ氏8 ай бұрын
There are continuous but indiferable points in the spline, right? What are you going to do?
@daleanfer74498 ай бұрын
刚好期盼这个!
@umarjamilai8 ай бұрын
期待你的评价😇
@daleanfer74498 ай бұрын
❤很好的内容,有考虑做inverse rl的内容吗❤
@Kishan314688 ай бұрын
Thanks man. Next xLSTM please.
@fatemeshams97588 ай бұрын
awesome👍
@routerfordium8 ай бұрын
Thank you for the great video! Can you (or anyone) help understand why you need to introduce the basis functions b(x) in the residual activation functions?
@ikramaharchi10422 ай бұрын
thank You so much
@plutophy12428 ай бұрын
this video is so amazing!!!!!!!
@fouziaanjums64758 ай бұрын
Hi, can you please make a video on multimodal LLMs, fine tuning it for custom dataset...
@umarjamilai5 ай бұрын
Check my latest video!
@akramsalim97068 ай бұрын
awesome bro.
@AkhoNdlodaka8 ай бұрын
THANK YOU
@rohitjindal1248 ай бұрын
Sir I have been a huge fan of your videos and have watched all of them . I am currently in my second year BTech and really passionate about learning ml sir if possible can work under you I don’t want any certificate or anything just want to see observe and learn
@RudraPratapDhara8 ай бұрын
Could you please next explain multi modal llms, techniques like Llava, llava plus, llava next?
@Patrick-wn6uj8 ай бұрын
I waiting for that day too
@umarjamilai5 ай бұрын
Check my latest video!
@RudraPratapDhara5 ай бұрын
@@umarjamilai Yeah checking out, your are as usual the G.O.A.T
@christopherc1686 ай бұрын
But what about wavelt Kolmogorov Arnold networks ?