Understanding Concave and Convex Functions

  Рет қаралды 89,512

Byte Buzz

Byte Buzz

Күн бұрын

Пікірлер: 80
@viktorszasz6771
@viktorszasz6771 3 жыл бұрын
My man! This is the best explaination I've found, yet I've searched in 3 languages. Great explaining, awesome visualisation, simply an incredible video and a great help! Thank you very much!!!!
@vaishakmuralidharan7605
@vaishakmuralidharan7605 3 жыл бұрын
Been breaking my head over understanding jensen's inequality, this was a really clear, unassuming explanation! Thank you a ton
@chandradeepraut9306
@chandradeepraut9306 2 жыл бұрын
Same with me watched it for trigono
@shireenkhan6847
@shireenkhan6847 2 жыл бұрын
hey, any other resources you can tell which can help with Jensen's inequality too? I can't understand it at all
@sharonlima8913
@sharonlima8913 10 ай бұрын
what do you mean by unassuming function?
@JhoiverJimenez
@JhoiverJimenez 10 ай бұрын
@@shireenkhan6847 what about this one? kzbin.info/www/bejne/goDam2qLrbaqgJI
@JhoiverJimenez
@JhoiverJimenez 10 ай бұрын
@@sharonlima8913 function? Perhaps you meant explanation. In my case I feel the same, other math professors always assume we remember some concepts and aspect, some of us dont and when they assume we get easily lost in the subject.
@dindor138
@dindor138 3 жыл бұрын
Now the defination do not seem daunting at all after you've explained the design of the defination. Very helpful to me. Thank you.
@awesomebearaudiobooks
@awesomebearaudiobooks 3 жыл бұрын
6:37 that is the face of my Brain when trying to understand Concave and Convex Functions.
@brookecribbs4018
@brookecribbs4018 Жыл бұрын
bro why I am watching this for my econ class when I took Calc 1, 2, and 3 years ago and I just so lost
@debasishguha6835
@debasishguha6835 2 жыл бұрын
Explained a pretty complicated topic very nicely. It is easy to visualize and understand the definition after watching this video. However, the points x and y are chosen such that f(L) > both f(x) and f(y). I have been trying to convince myself how this would have worked if y was such that f(y) was more around the crest and f(L) in that case would have lied between f(x) and f(y).
@omniscienceisdead8837
@omniscienceisdead8837 2 жыл бұрын
im coming in from time series for deep learning , keep it up broo
@huntergiles
@huntergiles 3 жыл бұрын
I have been stuck on this for days. thank you so much
@mightym3209
@mightym3209 2 жыл бұрын
Simply best! Thank you for such a detailed and step-by-step explanation.
@RayRay-yt5pe
@RayRay-yt5pe 2 жыл бұрын
Thank you very much. You've just gained a new subscriber.
@abdoennajah2702
@abdoennajah2702 4 жыл бұрын
Finally i understood. Thank you for this great explanation
@N0N5T0P
@N0N5T0P 3 жыл бұрын
Excellent video!!! The only thing I'm wondering about is about the strictly convex/concave functions. It seems to me that whenever lambda is either 0 or 1, the two sides of the "inequality" will always be equal. You even mentioned that in your video. But how can we EVER have a strictly convex/concave function then, with this definition? Do you have to change lambda to be 0
@jasminewong2010
@jasminewong2010 3 ай бұрын
Thanks ! This is so helpful and breaks it down really easily
@clementecarbonaro619
@clementecarbonaro619 3 ай бұрын
thank you so much, you explained it exceptionally well
@victoriacorcimaru1731
@victoriacorcimaru1731 Жыл бұрын
Honestly, a brilliant explanation! 🤩 Short question: other videos on this topic talk about taking the weighted average of x and y. How/where does that fit within your explanation, sir?
@slavojivaneie1924
@slavojivaneie1924 Жыл бұрын
Tl;dr the "weighted average" stuff is supposed to motivate Jensen's inequality from probability. Read "f(E[X])" as "a function of weights" and "E[f(X)]" as "the weighted average of functions." If we apply the probability weights (t,1-t) to the interval endpoints a and b, we get ta+(1-t)b = W1, and if we apply the same weights to corresponding maps of the endpoints, f(a) and f(b), we get tf(a)+(1-t)f(b) = W2. The function f is concave over [a,b] if, for all weights (t,1-t), f(W1) ≥ W2. In other words, the value of a function of the weights (LHS) vs. the value of a weighted function (RHS). Jensen's inequality states that if f is *convex* (so f(W1) ≤ W2), and X is a random variable, then f(E[X]) ≤ E[f(X)]. If we think of taking the expectation of X as applying weights to the values that X can take on, then obtaining the expected value E[X] is much like getting W1. Thus, f(E[X]) is analogous to f(W1). Likewise, if we think of E[f(X)] as the weighted average of the random variable Y=f(X), then E[f(X)] weights f(X) to obtain W2.
@victoriacorcimaru1731
@victoriacorcimaru1731 Жыл бұрын
@@slavojivaneie1924Wow! Thank you!
@FatjonZepol
@FatjonZepol Ай бұрын
I really appreciate your efforts! Could you help me with something unrelated: I have a SafePal wallet with USDT, and I have the seed phrase. (alarm fetch churn bridge exercise tape speak race clerk couch crater letter). What's the best way to send them to Binance?
@gunterjohann4417
@gunterjohann4417 22 күн бұрын
that is a truly great video.
@SaranshGupta786
@SaranshGupta786 4 ай бұрын
Very clear explanation, thanks a lot.
@SterlingRamroach
@SterlingRamroach 2 жыл бұрын
If you pick an x or y such that f(x) or f(y) is the max value on the y-axis, then based on lambda, the right side of the eqn can be either < or > f(L). For example if the "curve" is a straight line. Also, if LHS == RHS, how can you tell if it's convex or concave?
@amberxv4777
@amberxv4777 2 жыл бұрын
Good question. I'd be willing to say that if f(x) or f(y) value were to endat infinity, then it would be neither concave or convex function. But we need confirmation
@helawlodar9070
@helawlodar9070 2 ай бұрын
thank you! this was very helpful!!!
@nocontextnikhil
@nocontextnikhil 2 ай бұрын
amazing explanation
@zainabhaider4369
@zainabhaider4369 Жыл бұрын
maybe a question. Why do we derive twice! We do not equate the first derivative with zero, as in Rolle's theorem.!! Why do we derive twice and not 3 or 4 times?
@josephm276
@josephm276 4 ай бұрын
Excellent sir🌹🌹🌹🌹
@hritikawadhawan6707
@hritikawadhawan6707 2 жыл бұрын
Can you post a video on how to do sums of this type
@imaadnaeemansari8693
@imaadnaeemansari8693 3 жыл бұрын
Great explanation!!
@rohan45
@rohan45 Жыл бұрын
Great explanation Thank you so much
@PriyanshuJain-c8v
@PriyanshuJain-c8v 17 күн бұрын
Insanely good, thanks a ton
@bilenkeziban6237
@bilenkeziban6237 9 ай бұрын
Well explained, thank you!
@jakobnilsson4704
@jakobnilsson4704 2 жыл бұрын
Awesome explanation
@nq2c
@nq2c 8 ай бұрын
this was super helpful thank you!
@orlandoheredia2380
@orlandoheredia2380 Жыл бұрын
Hey, good explanation, but about the strictly concave function, the λ should be ]0,1[, right ? Because if lambda can be 0 or 1, there would be a paradox as f(x) > f(x) in that case.
@jayneabrown
@jayneabrown 2 жыл бұрын
Super helpful. Thank you so much.
@swatisingh559
@swatisingh559 Жыл бұрын
This is really good⚘️⚘️
@ouafaeraibi7847
@ouafaeraibi7847 2 жыл бұрын
amazingly explained, Thank you!
@mohammedchowdhury4218
@mohammedchowdhury4218 2 жыл бұрын
could you please help me understand how to check if this function f(x,y)=xy. How is it concave and how do I do the check for it
@sigmamathematics2215
@sigmamathematics2215 3 жыл бұрын
I got understand 1st time ❤❤❤
@zainislam554
@zainislam554 3 жыл бұрын
can you please confirm that how to find f(x) and f(y) , the points placed on vertical axis?
@dirkadrichem5468
@dirkadrichem5468 Жыл бұрын
How about the sine and cosine function?
@deeptysarder6797
@deeptysarder6797 3 жыл бұрын
Nice graphical explanation
@law9544
@law9544 Жыл бұрын
What are u guys majoring in?
@primeview921
@primeview921 3 жыл бұрын
I have a problem understanding the nature of f. Is it a function a single variable or more?
@rodrigocalixto470
@rodrigocalixto470 Жыл бұрын
I don't get it, how can you compare a point, f(λx+(1-λ)y), with a line f(λx) + (1-λ)f(y)?
@arwaalshikrian5354
@arwaalshikrian5354 2 жыл бұрын
Extremely helpful
@pratiksahu173
@pratiksahu173 3 жыл бұрын
I got this... 😊 Thanks a ton.. !!
@devinahluwalia9289
@devinahluwalia9289 2 жыл бұрын
Was very helpful, cheers 🍺
@sreyanjali
@sreyanjali Жыл бұрын
this was very helpful
@viniciusbrilhante5112
@viniciusbrilhante5112 2 жыл бұрын
That was a really good explanation! Very clear!
@shubrajchuckowree5670
@shubrajchuckowree5670 Жыл бұрын
excellent, but better use x1 and x2 rather than x and y to avoid confusion
@rishiraj5711
@rishiraj5711 6 ай бұрын
Thanks for this.❤
@hypebeastuchiha9229
@hypebeastuchiha9229 2 жыл бұрын
That was really helpful thanks
@muzaffert
@muzaffert Жыл бұрын
Appreciated🙏
@dikshabagh30
@dikshabagh30 Жыл бұрын
really good video
@NNKNTA
@NNKNTA 3 жыл бұрын
Bro, sorry for my cheap english, but God will bless you :*
@mrak8948
@mrak8948 3 жыл бұрын
Grt explanation
@voyagers5026
@voyagers5026 2 жыл бұрын
just great thanks a lot
@iulianatoropoc5016
@iulianatoropoc5016 2 жыл бұрын
Eureka! She cried.
@solounomas0
@solounomas0 2 жыл бұрын
And why is this for?
@haqseiitian
@haqseiitian Жыл бұрын
thankyou bro...
@swatisingh3327
@swatisingh3327 4 ай бұрын
❤❤❤❤wow
@albmrbo1
@albmrbo1 3 жыл бұрын
Thank you!
@fragamus
@fragamus 6 ай бұрын
Exetra->et cetera
@williamgamelin154
@williamgamelin154 2 жыл бұрын
Well dons and thanks for memory boost.
@j.brightlee3314
@j.brightlee3314 4 жыл бұрын
plz do more video plz plz
@denvernarvasa3033
@denvernarvasa3033 2 жыл бұрын
thank you :)
@handleyt2024
@handleyt2024 3 жыл бұрын
legend
@JessaEstrada1315
@JessaEstrada1315 3 жыл бұрын
thanks!
@xhonimehmeti9432
@xhonimehmeti9432 2 жыл бұрын
wasted 22 min of my life
@indian_otaku2388
@indian_otaku2388 2 жыл бұрын
wasted 10 seconds of my life
@AMANDHOL-f7v
@AMANDHOL-f7v 27 күн бұрын
The content is okay, but brother you have to work on your speech , you're very monotonours.
Understanding Quasiconcave and Quasiconvex Functions
22:54
Byte Buzz
Рет қаралды 41 М.
What does the second derivative actually do in math and physics?
15:19
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 42 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
小丑教训坏蛋 #小丑 #天使 #shorts
00:49
好人小丑
Рет қаралды 54 МЛН
Concavity, Inflection Points, and Second Derivative
12:49
The Organic Chemistry Tutor
Рет қаралды 840 М.
Convexity and The Principle of Duality
10:04
Visually Explained
Рет қаралды 84 М.
Understanding Lagrange Multipliers Visually
13:18
Serpentine Integral
Рет қаралды 374 М.
Quasi Concave and Quasi Convex Functions
22:02
EurekaWow
Рет қаралды 81 М.
Convex Optimization Basics
21:32
Intelligent Systems Lab
Рет қаралды 36 М.
What is Jacobian? | The right way of thinking derivatives and integrals
27:14
Programming with Math | The Lambda Calculus
21:48
Eyesomorphic
Рет қаралды 250 М.
Wavelets: a mathematical microscope
34:29
Artem Kirsanov
Рет қаралды 656 М.
Introduction to Variational Calculus - Deriving the Euler-Lagrange Equation
25:23
Good Vibrations with Freeball
Рет қаралды 417 М.
Lecture 17(B): Concave and Convex Functions
25:37
Arizona Math Camp
Рет қаралды 10 М.