That is how you explain analytically, proper analytical approach, sad to see only 4.45K subscribers, dont worry i will share it
@eyslb3593 жыл бұрын
You are the best explicator I've seen so far. Thank you!
@JohannesFrey3 жыл бұрын
Hey… thanks for your kind words :)
@blasttrash2 жыл бұрын
too long intro. video starts at 1:50
@SassePhoto9 ай бұрын
Gruss aus Vancouver! Ausgezeichnet gemacht, klipp und klar, besten Dank!
@JohannesFrey9 ай бұрын
Hey, danke dir ☺️
@amineziad50992 жыл бұрын
You have a good explanation but your intro is tooooo long
@JohannesFrey2 жыл бұрын
Hey, thanks for your comment and feedback :)
@simpernchong7 ай бұрын
Thank you Sir for the explanation.
@zg78602 жыл бұрын
extremely dense and clear, thank you sir
@JohannesFrey2 жыл бұрын
Thank you very much :)
@riwinzo8133 Жыл бұрын
Thank you for the explanation. Helped a lot.
@HafeezUllah3 жыл бұрын
I got the basic intuition with this video. thank you.
@lamiakazidali29532 жыл бұрын
Thak you for this explanation, I would like to learn more about the relationship between the gradient and the mask at the output, what I know, is that the gradient serves to draw points of mask at the output, then is there another relationship between the gradient and the mask?
@jayeshreddy25819 ай бұрын
You were so helpful🙌
@abdelrahmanashraf76362 жыл бұрын
Extremely Helpful thanks a lot
@JohannesFrey2 жыл бұрын
Hey man, thanks a lot :)
@mayankkumarshaw6357 ай бұрын
Greatly explained! Thank you. Can you make a video about RBMs and Deep Belief Networks
@amitsharma83372 жыл бұрын
Is it me or the volume of the video is lower than usual?
@mohammadvafaie5537 Жыл бұрын
good information, thanks
@Tamuzia9 ай бұрын
great explenation! thanks
@fantazzmagazz91562 жыл бұрын
Nice and easy overview of Ronnebergers work
@JohannesFrey2 жыл бұрын
Thank you very much :)
@SuperLordee2 жыл бұрын
Hey may I ask what are these channels? I didn‘t understand that part.
@JohannesFrey2 жыл бұрын
hey man... could you provide me the time in the video of that part?
@ziba892 жыл бұрын
if you're referring to the number of channels that change with each level, they're associated with the number of filters you're using for the convolution operation - so each filter (from the convolution operation) will reduce the input size in the x/y dimensions (width and height -- given that it's an unpadded convolution) and will increase the number of channels by 1. for example if you look at the first block, your input image size is 572x572x1 (width x height x num_channels -- 1 for grayscale image, if you have RGB image, it's 3) -- with the first convolution operation (navy blue arrow to the right) a 3x3x64 convolution operation was applied -- meaning 64 different filters of 3x3 size were convolved with the original 572x572x1 image, resulting in an image with output size = [(572 + 2*0 - 3) / 1] + 1 = 570 for each dimension (unpadded convolution - and single stride - equation is (inputSize + 2*padding - filterSize / stride ) + 1 ) -- So you will get an output dimension of 570x570x64, which is what you see in the first convolution operation output in the diagram. As they mentioned, the number of channels are doubled with each level, meaning they increase the number of filters by a factor of 2 each time. You can check out Andrew Ng's video which explains this operation step by step (C4W1L08 Simple Convolutional Network Example on YT)
@alishamerwerth32843 жыл бұрын
Wow cool Video! Very well explained!
@gampangji61712 жыл бұрын
Thank you so much, I need next Example Project
@LintoGeorge-IIITK Жыл бұрын
This video is very nice and well explained. very useful. will you please make a video in the topic W-Net: A Deep Model for Fully Unsupervised Image Segmentation
@dipankarnandi77082 жыл бұрын
Thank you for the explanation. Helped a lot. Just a question if you could cover this topic in one of your videos- What is Anomaly detection?? Like for example detecting defects on surfaces... can u-net be useful there?
@senaraul86262 жыл бұрын
Awesome video and very well explained. Maybe in the next videos, you should not switch between you and the architecture of the network, because that confuses me a little.
@JohannesFrey2 жыл бұрын
Hey, thanks for your comment and your suggestion. I will try not to switch that often in the next videos :)
@4liexplains4862 жыл бұрын
thank you
@anjaliram5050 Жыл бұрын
Boah danke für dieses Video, rettest gerade meinen ass!!!!!
@JohannesFrey Жыл бұрын
👍😂
@slingshot7602 Жыл бұрын
please don't take too much time in intro
@Luxcium9 ай бұрын
It is not clear whether this is a good idea to make a 0:54 second introduction I don’t think it is useful for you or anyone 😮😢
@Luxcium9 ай бұрын
Fk this is a joke but it is an other introduction at 1:10 😮😢😮 without getting into it 😢😢😢
@Luxcium9 ай бұрын
Then I got asked what I am waiting for 😂 1:33
@Luxcium9 ай бұрын
I understood instantly why they called it a U net… if instantly implies that instant at the 3:00 mark when after waiting for 3 minutes I understood 😮
@محمدالنجار-خ7خ15 күн бұрын
The music is bad The idea of putting music is bad I try to focus but it distracts me badly