UNet for Image Segmentation - What You Need To Know! - Computer Vision

  Рет қаралды 39,912

Johannes Frey

Johannes Frey

Күн бұрын

Пікірлер: 42
@hamzaaslam1999
@hamzaaslam1999 5 ай бұрын
That is how you explain analytically, proper analytical approach, sad to see only 4.45K subscribers, dont worry i will share it
@eyslb359
@eyslb359 3 жыл бұрын
You are the best explicator I've seen so far. Thank you!
@JohannesFrey
@JohannesFrey 3 жыл бұрын
Hey… thanks for your kind words :)
@blasttrash
@blasttrash 2 жыл бұрын
too long intro. video starts at 1:50
@SassePhoto
@SassePhoto 9 ай бұрын
Gruss aus Vancouver! Ausgezeichnet gemacht, klipp und klar, besten Dank!
@JohannesFrey
@JohannesFrey 9 ай бұрын
Hey, danke dir ☺️
@amineziad5099
@amineziad5099 2 жыл бұрын
You have a good explanation but your intro is tooooo long
@JohannesFrey
@JohannesFrey 2 жыл бұрын
Hey, thanks for your comment and feedback :)
@simpernchong
@simpernchong 7 ай бұрын
Thank you Sir for the explanation.
@zg7860
@zg7860 2 жыл бұрын
extremely dense and clear, thank you sir
@JohannesFrey
@JohannesFrey 2 жыл бұрын
Thank you very much :)
@riwinzo8133
@riwinzo8133 Жыл бұрын
Thank you for the explanation. Helped a lot.
@HafeezUllah
@HafeezUllah 3 жыл бұрын
I got the basic intuition with this video. thank you.
@lamiakazidali2953
@lamiakazidali2953 2 жыл бұрын
Thak you for this explanation, I would like to learn more about the relationship between the gradient and the mask at the output, what I know, is that the gradient serves to draw points of mask at the output, then is there another relationship between the gradient and the mask?
@jayeshreddy2581
@jayeshreddy2581 9 ай бұрын
You were so helpful🙌
@abdelrahmanashraf7636
@abdelrahmanashraf7636 2 жыл бұрын
Extremely Helpful thanks a lot
@JohannesFrey
@JohannesFrey 2 жыл бұрын
Hey man, thanks a lot :)
@mayankkumarshaw635
@mayankkumarshaw635 7 ай бұрын
Greatly explained! Thank you. Can you make a video about RBMs and Deep Belief Networks
@amitsharma8337
@amitsharma8337 2 жыл бұрын
Is it me or the volume of the video is lower than usual?
@mohammadvafaie5537
@mohammadvafaie5537 Жыл бұрын
good information, thanks
@Tamuzia
@Tamuzia 9 ай бұрын
great explenation! thanks
@fantazzmagazz9156
@fantazzmagazz9156 2 жыл бұрын
Nice and easy overview of Ronnebergers work
@JohannesFrey
@JohannesFrey 2 жыл бұрын
Thank you very much :)
@SuperLordee
@SuperLordee 2 жыл бұрын
Hey may I ask what are these channels? I didn‘t understand that part.
@JohannesFrey
@JohannesFrey 2 жыл бұрын
hey man... could you provide me the time in the video of that part?
@ziba89
@ziba89 2 жыл бұрын
if you're referring to the number of channels that change with each level, they're associated with the number of filters you're using for the convolution operation - so each filter (from the convolution operation) will reduce the input size in the x/y dimensions (width and height -- given that it's an unpadded convolution) and will increase the number of channels by 1. for example if you look at the first block, your input image size is 572x572x1 (width x height x num_channels -- 1 for grayscale image, if you have RGB image, it's 3) -- with the first convolution operation (navy blue arrow to the right) a 3x3x64 convolution operation was applied -- meaning 64 different filters of 3x3 size were convolved with the original 572x572x1 image, resulting in an image with output size = [(572 + 2*0 - 3) / 1] + 1 = 570 for each dimension (unpadded convolution - and single stride - equation is (inputSize + 2*padding - filterSize / stride ) + 1 ) -- So you will get an output dimension of 570x570x64, which is what you see in the first convolution operation output in the diagram. As they mentioned, the number of channels are doubled with each level, meaning they increase the number of filters by a factor of 2 each time. You can check out Andrew Ng's video which explains this operation step by step (C4W1L08 Simple Convolutional Network Example on YT)
@alishamerwerth3284
@alishamerwerth3284 3 жыл бұрын
Wow cool Video! Very well explained!
@gampangji6171
@gampangji6171 2 жыл бұрын
Thank you so much, I need next Example Project
@LintoGeorge-IIITK
@LintoGeorge-IIITK Жыл бұрын
This video is very nice and well explained. very useful. will you please make a video in the topic W-Net: A Deep Model for Fully Unsupervised Image Segmentation
@dipankarnandi7708
@dipankarnandi7708 2 жыл бұрын
Thank you for the explanation. Helped a lot. Just a question if you could cover this topic in one of your videos- What is Anomaly detection?? Like for example detecting defects on surfaces... can u-net be useful there?
@senaraul8626
@senaraul8626 2 жыл бұрын
Awesome video and very well explained. Maybe in the next videos, you should not switch between you and the architecture of the network, because that confuses me a little.
@JohannesFrey
@JohannesFrey 2 жыл бұрын
Hey, thanks for your comment and your suggestion. I will try not to switch that often in the next videos :)
@4liexplains486
@4liexplains486 2 жыл бұрын
thank you
@anjaliram5050
@anjaliram5050 Жыл бұрын
Boah danke für dieses Video, rettest gerade meinen ass!!!!!
@JohannesFrey
@JohannesFrey Жыл бұрын
👍😂
@slingshot7602
@slingshot7602 Жыл бұрын
please don't take too much time in intro
@Luxcium
@Luxcium 9 ай бұрын
It is not clear whether this is a good idea to make a 0:54 second introduction I don’t think it is useful for you or anyone 😮😢
@Luxcium
@Luxcium 9 ай бұрын
Fk this is a joke but it is an other introduction at 1:10 😮😢😮 without getting into it 😢😢😢
@Luxcium
@Luxcium 9 ай бұрын
Then I got asked what I am waiting for 😂 1:33
@Luxcium
@Luxcium 9 ай бұрын
I understood instantly why they called it a U net… if instantly implies that instant at the 3:00 mark when after waiting for 3 minutes I understood 😮
@محمدالنجار-خ7خ
@محمدالنجار-خ7خ 15 күн бұрын
The music is bad The idea of putting music is bad I try to focus but it distracts me badly
@richarddjarbeng7093
@richarddjarbeng7093 8 ай бұрын
Longest intro ever 🙄
The U-Net (actually) explained in 10 minutes
10:31
rupert ai
Рет қаралды 130 М.
U-NET Paper Walkthrough
19:55
Aladdin Persson
Рет қаралды 53 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
What is the Receptive Field in Convolutional Neural Networks?
4:54
But what is a convolution?
23:01
3Blue1Brown
Рет қаралды 2,8 МЛН
219 - Understanding U-Net architecture and building it from scratch
37:37
208 - Multiclass semantic segmentation using U-Net
31:20
DigitalSreeni
Рет қаралды 91 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН