Principal component analysis step by step | PCA explained step by step | PCA in statistics

  Рет қаралды 90,373

Unfold Data Science

Unfold Data Science

Күн бұрын

Principal component analysis step by step | PCA explained step by step | PCA in statistics
Hello ,
My name is Aman and I am a Data Scientist.
Topics for this video:
1. Principal component analysis step by step
2. PCA explained step by step
3. PCA in statistics
4. Principal component analysis in english
5. Principal component analysis in hindi
6. Principal component analysis in telugu
7. Principal component analysis in malayalam
8. Principal component analysis in digital image processing
9. Principal component analysis in python
10. Principal component analysis in python
About Unfold Data science: This channel is to help people understand basics of data science through simple examples in easy way. Anybody without having prior knowledge of computer programming or statistics or machine learning and artificial intelligence can get an understanding of data science at high level through this channel. The videos uploaded will not be very technical in nature and hence it can be easily grasped by viewers from different background as well.
If you need Data Science training from scratch . Please fill this form (Please Note: Training is chargeable)
docs.google.co...
Book recommendation for Data Science:
Category 1 - Must Read For Every Data Scientist:
The Elements of Statistical Learning by Trevor Hastie - amzn.to/37wMo9H
Python Data Science Handbook - amzn.to/31UCScm
Business Statistics By Ken Black - amzn.to/2LObAA5
Hands-On Machine Learning with Scikit Learn, Keras, and TensorFlow by Aurelien Geron - amzn.to/3gV8sO9
Ctaegory 2 - Overall Data Science:
The Art of Data Science By Roger D. Peng - amzn.to/2KD75aD
Predictive Analytics By By Eric Siegel - amzn.to/3nsQftV
Data Science for Business By Foster Provost - amzn.to/3ajN8QZ
Category 3 - Statistics and Mathematics:
Naked Statistics By Charles Wheelan - amzn.to/3gXLdmp
Practical Statistics for Data Scientist By Peter Bruce - amzn.to/37wL9Y5
Category 4 - Machine Learning:
Introduction to machine learning by Andreas C Muller - amzn.to/3oZ3X7T
The Hundred Page Machine Learning Book by Andriy Burkov - amzn.to/3pdqCxJ
Category 5 - Programming:
The Pragmatic Programmer by David Thomas - amzn.to/2WqWXVj
Clean Code by Robert C. Martin - amzn.to/3oYOdlt
My Studio Setup:
My Camera : amzn.to/3mwXI9I
My Mic : amzn.to/34phfD0
My Tripod : amzn.to/3r4HeJA
My Ring Light : amzn.to/3gZz00F
Join Facebook group :
www.facebook.c...
Follow on medium : / amanrai77
Follow on quora: www.quora.com/...
Follow on twitter : @unfoldds
Get connected on LinkedIn : / aman-kumar-b4881440
Follow on Instagram : unfolddatascience
Watch Introduction to Data Science full playlist here : • Data Science In 15 Min...
Watch python for data science playlist here:
• Python Basics For Data...
Watch statistics and mathematics playlist here :
• Measures of Central Te...
Watch End to End Implementation of a simple machine learning model in Python here:
• How Does Machine Learn...
Learn Ensemble Model, Bagging and Boosting here:
• Introduction to Ensemb...
Build Career in Data Science Playlist:
• Channel updates - Unfo...
Artificial Neural Network and Deep Learning Playlist:
• Intuition behind neura...
Natural langugae Processing playlist:
• Natural Language Proce...
Understanding and building recommendation system:
• Recommendation System ...
Access all my codes here:
drive.google.c...
Have a different question for me? Ask me here : docs.google.co...
My Music: www.bensound.c...

Пікірлер: 147
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Access English, Hindi Course here - www.unfolddatascience.com/store Don't forget to register on the website, it's free🙂
@o2protectordm909
@o2protectordm909 Жыл бұрын
Code link please
@tanmaychakraborty7818
@tanmaychakraborty7818 2 жыл бұрын
Underrated channel for machine learning god bless you Aman
@MirnaliniGunaraj
@MirnaliniGunaraj 5 ай бұрын
One of the best videos that I have come across for PCA . Thanks @UnfoldDataScience
@victorbelmarlandaeta4763
@victorbelmarlandaeta4763 6 ай бұрын
Dude, you are a really good teacher, awesome methodology!!!
@souravbiswas6892
@souravbiswas6892 2 жыл бұрын
Weight is vector, mass is scaler. However explained in detail. Great work.
@margaretpetermwanzia5738
@margaretpetermwanzia5738 10 ай бұрын
a piece of jargon there
@giniyag8606
@giniyag8606 2 жыл бұрын
Thunbs up with 2 hands . Was never able to understand this concepot before.Big Thank you :)
@milliesadie486
@milliesadie486 2 жыл бұрын
sir thank yoU to clear this concept coz i have been in youtube since 2 hour understanding pca and after watching this video i am clear my doubt
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Glad that it was helpful 😊
@rahulmedcure
@rahulmedcure 2 жыл бұрын
of course, it was a great effort to explain PCA in a simple way. I would say at the end of the tutorial you should show the two-way plot explaining the information we are getting from the PCA which was difficult to predict while just looking at the data. Just a suggestion.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Appreciate your suggestion Rahul. Thanks for watching
@krishnab6444
@krishnab6444 2 жыл бұрын
perfectly explained aman thank you!
@URCristianoCR7z
@URCristianoCR7z Жыл бұрын
Awesome lecture. Better than so called professors
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
It's my pleasure. Please share with friends
@malavikadutta1011
@malavikadutta1011 2 жыл бұрын
Thanks Aman for such an awesome explanation for a confusing topic like PCA.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks and welcome
@shaileshpokharel586
@shaileshpokharel586 Жыл бұрын
Absolutely underrated tutor.
@arni5na
@arni5na 2 жыл бұрын
Weight is not scalar; it's mass pointing towards the direction of gravity. Mass is scalar.
@rinkygupta8267
@rinkygupta8267 8 ай бұрын
Today i become a big fan of your lectures... Hi i am following your lectures since last few months and i like them from the beginning, the way how you explain in very simple manner, the technique how to relate all the theory with real world examples, etc... You really doing a fantastic job... You really know how to explain maths in a very common language so it doesn't only fit in my mind but also touches my heart... Thank you for sharing your knowledge with us... I really want to learn more and more with you in near future... You seriously provide a training to the current teachers how to teach the things and how to generate the intrest of learners in any topic... 🥰 Best wishes
@UnfoldDataScience
@UnfoldDataScience 8 ай бұрын
This is precious
@rinkygupta8267
@rinkygupta8267 8 ай бұрын
The way you explained the vectors mathematically correlated with flight example was wonderful.... 🥰 🎉
@UnfoldDataScience
@UnfoldDataScience 8 ай бұрын
Your comment mean a lot to me. Welcome onboard to UFDS
@Birdsneverfly
@Birdsneverfly 2 жыл бұрын
You have an outstanding explanation for PCA. All the technical jargon out there is only to confuse people. Cheers.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks for watching, your comments mean a lot.
@Birdsneverfly
@Birdsneverfly 2 жыл бұрын
@@UnfoldDataScience Thank you actually for sharing your knowledge. I am a data scientist myself, I regularly search KZbin for quality education. Kudos for the work 😌
@kunalthakre7164
@kunalthakre7164 2 жыл бұрын
Thanks aman... It was really a helpful video.
@ashwanibalyan9047
@ashwanibalyan9047 Жыл бұрын
Best video on PCA....keep it up
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
Thanks Ashwani
@abdullajubair9326
@abdullajubair9326 Күн бұрын
really good explanation
@JosyEmma
@JosyEmma Жыл бұрын
That's a detailed course thanks.
@naageshk1256
@naageshk1256 7 ай бұрын
Great explanation.. thank you so much 🎉❤
@tradetalks101
@tradetalks101 2 жыл бұрын
Thanks boss ... Really appreciated .. Good work
@amarnathdhinakaran9522
@amarnathdhinakaran9522 2 жыл бұрын
Thanks for the amazing content Aman.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Amar.
@sambitmohanty1758
@sambitmohanty1758 2 жыл бұрын
Great video Aman as usual expected.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Sambit.
@saqibjawed3001
@saqibjawed3001 Жыл бұрын
good job simple and clear understanding
@Krishna-pm8ty
@Krishna-pm8ty 2 жыл бұрын
Wow . That was just superb.👏👏👏👏
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thank you so much 😀
@sajalhsn13
@sajalhsn13 2 жыл бұрын
Unbelievable explanation. Wow!!!!
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks alot for your positive feedback. Please share with others as well so that everyone gets the knowledge.
@achumohan5908
@achumohan5908 2 жыл бұрын
Thanks a lot Aman!! well explained 🙂
@adithyaboyapati
@adithyaboyapati 2 жыл бұрын
Very Nice Explanation. You will never disappoint us 😄
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Adithya.
@agirmaus-lh9zi
@agirmaus-lh9zi 2 жыл бұрын
Thanks Aman for this wonderful explanation
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thank you Anita.
@faridhusen6651
@faridhusen6651 2 жыл бұрын
I was hanging around until I find this video. Thank you sir!
@priyankathakur1691
@priyankathakur1691 Жыл бұрын
Great video. Request you to make more videos from basics for the entire data science project lifecycle.
@RamanKumar-ss2ro
@RamanKumar-ss2ro 2 жыл бұрын
Thanks for the video, it's too good.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Most welcome
@anuragrai7662
@anuragrai7662 2 жыл бұрын
great video sir your explanation is amazing🔥
@akhildevjr
@akhildevjr Жыл бұрын
You did it better, and few of them are need more clarification especially for bigger datas having 100 or more columns, and how we can rotate the axis by which terms
@rohitgaikwad2266
@rohitgaikwad2266 Жыл бұрын
Thanks Aman Nicely Explained 🙂👍
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
Welcome Rohit. pls share with friends who may be interested.
@Anamika-nb3tv
@Anamika-nb3tv 4 ай бұрын
Very nice explanation😊
@radhakrishnanananthan1585
@radhakrishnanananthan1585 2 жыл бұрын
Great explanation 👌
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Radha.
@salahmahmoud2119
@salahmahmoud2119 Жыл бұрын
Your explanation is incredible!!!! 👏
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
Thank you! 😃
@ManojMaddineniBCS
@ManojMaddineniBCS 2 жыл бұрын
Thank you so much for the detailed explanation. Really loved the way you covered each individual basic topic building up to the main topic.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Manoj.
@shekharkumar1902
@shekharkumar1902 2 жыл бұрын
Jai ho Gurudev ! Sakshat Saraswati ka vaas hi apke kanth me ! Very well explained....one questions. How it gets decided that how much data is explained by PCA1 and how much data has explained by PCA2 and so on ?
@xendu-d9v
@xendu-d9v 2 жыл бұрын
check EVR (explained variance ratio)
@akashprabhakar6353
@akashprabhakar6353 2 жыл бұрын
I first hit like on your videos and then watch...coz i know you are always awesome 🙂
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Akash 🙂
@preranatiwary7690
@preranatiwary7690 2 жыл бұрын
Amazing video, thanks for sharing 🙂
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Welcome
@kidya-moohustories4764
@kidya-moohustories4764 2 жыл бұрын
very clear and valuable
@BeaverMonkey
@BeaverMonkey 2 жыл бұрын
You do a fantastic job explaining complex topics. Definitely subbing
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks and welcome
@GauravSingh-zt4us
@GauravSingh-zt4us Ай бұрын
love u sir for this support
@shaelanderchauhan1963
@shaelanderchauhan1963 2 жыл бұрын
Great Videos Aman
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Shaelander
@upendram2820
@upendram2820 2 жыл бұрын
Very well explained... Thank you very much...
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Welcome upendra
@upendram2820
@upendram2820 2 жыл бұрын
@@UnfoldDataScience ❤
@sohaibyousuf
@sohaibyousuf Жыл бұрын
You have explained well but beginners are not able to undersatand the coding phase
@rev1nth64
@rev1nth64 5 ай бұрын
than you so much,love you bro
@kalpanapatil1028
@kalpanapatil1028 2 жыл бұрын
Thanks Aman👍🙏
@renvigautam6458
@renvigautam6458 6 ай бұрын
Thank you so much sir ....🎉
@VKRealsta
@VKRealsta 2 жыл бұрын
Nice session 👌
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Varsha.
@cagataydemirbas7259
@cagataydemirbas7259 Жыл бұрын
Great explanation thanks. Also I have a question; On my dataset 2 features has 0.8 corelation if I use PCA them to decrease one column is it handle 2 features without losing information ? Or should I just drop one column ?
@jaswanthgannamaneni8461
@jaswanthgannamaneni8461 2 жыл бұрын
Great video sir
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thank you Jaswanth
@VKRealsta
@VKRealsta 2 жыл бұрын
Please cover data mining, regression, correction, time series
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Let me check on these topics, regression and time series playlist are there. You can check in playlist section.
@SujanShrestha-pv3tf
@SujanShrestha-pv3tf Жыл бұрын
I wnt want to know more about entity embedding for categorical variables as like this
@kishorem4406
@kishorem4406 2 жыл бұрын
Very nicely explained 👌. Will be good if a Playlist is created for all ML algo explanations
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Sure Kishore.
@kishorem4406
@kishorem4406 2 жыл бұрын
@@UnfoldDataScience thank you
@sharanm5718
@sharanm5718 2 жыл бұрын
Hi aman, Can you please explain about quantization aware training, why it is used compared to floating point model
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Sharan, I will try to bring video on it.
@sushantgunjan7597
@sushantgunjan7597 2 жыл бұрын
Thanks Aman ! Well explained as always. This was my demand few days back and you created this video for all of us once again thanks for this. I have one question if we convert the data to mean centric and taking the covariance matrix what is the intuitions behind this ? Somewhere I read that eigenvector are those vector whose direction does not change when we scaling the matrix so after getting the covariance matrix we are looking that covariance vector whose direction does not change after scaling the data and all those vector are principal component of that data. Please clarify my doubt and correct my understanding.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thansk Sushant, Think like this. Make data mean centric ( so that covariance matrix is not screwed much even if data columns are on different scale consider milegae of car and it's cost in INR as two different coulmns) Calculate covariance matrix ( just to understand relationship between variables) Find Eigen value and eigen vector( to know on which direction maximum variance is there, may be 1,2,3 any number of directions, as I showed as V1, V2 in matrix example) Once we know in which direction/directions, maximum variance is there, we don't care about covariance matrix anymore, we just take our original data to that direction, we can say project original data to that direction to reduce dimension)
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Also those vectors are not principal components, once u project your original data to that vector direction then u get principal components
@sushantgunjan7597
@sushantgunjan7597 2 жыл бұрын
Thanks ! Got it.
@beifafana6905
@beifafana6905 Жыл бұрын
Can i use PCA to identify Climate smart Agriculture practices mainly used (adopted) by Household in the study area? pls help how can it is possible. Eg. i have 1.Conservation agriculture (Reduced tillage, Crop residue management-mulching, Crop-rotation/intercropping with cereals and legumes): 2.ISFM (Compost and manure management, Efficient fertilizer application techniques) 3...
@nareshkumarpatra6006
@nareshkumarpatra6006 Жыл бұрын
I have one question, PC1 shows more percentage, which means it should strongly correlate with the original output data. If possible, please clear this doubt.
@indiannationalist07
@indiannationalist07 2 жыл бұрын
Waiting for videos on LDA , MDS ,t-SNE and PcoA
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Yes on the way, thanks for watching.
@AnilN-td6fy
@AnilN-td6fy Жыл бұрын
Can you logic behind how to calculate Variance Explanantion by each PCA component? Keep up the good work. Thanks
@VKRealsta
@VKRealsta 2 жыл бұрын
It's very understandable
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Thanks Again
@hirdeshkumar4069
@hirdeshkumar4069 2 жыл бұрын
Thank you sir. It is great video. Just one thing need to know, incase of PCA also, we need to do data cleaning or directly we can proceed for PCA??
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Data cleaning will help PCA create more meaningful contents.
@AnjanBasumatary
@AnjanBasumatary 2 жыл бұрын
Sir please make video on exploratory data analysis
@nerdymath6
@nerdymath6 2 жыл бұрын
Can u help with regularised k means clustering
@bijayalaxmikar6982
@bijayalaxmikar6982 2 жыл бұрын
Hello Aman, Nice Explanation. but one question is it necessary all data set go through PCA or when we will use PCA
@Jatindersingh-wo5hf
@Jatindersingh-wo5hf Жыл бұрын
Kindly come to basics like on which type of variables PCA is applied. Why not other methods. How to deal with variables having different scales. Everything should start from basics which I found every where missing
@narendrakumarpatel6910
@narendrakumarpatel6910 2 жыл бұрын
Hi, I used XLSTAT and PAST tool to calculate PCs. I need "Contribution of the variables (%)" which I could get in XLSTAT easily but in PAST, I got value of "% variance". Is "% variance" in PAST is same as "Contribution of the variables (%)" in XLSTAT? Please respond. Thanks.
@tamalikasikder5066
@tamalikasikder5066 2 жыл бұрын
Can we do PCA on the combined results of samples from two separate distributions?
@nehalverma8063
@nehalverma8063 2 жыл бұрын
Thanks a lot.
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
You're welcome Nehal
@mathematicalwisdom1226
@mathematicalwisdom1226 2 жыл бұрын
While explaining Eigen value you expanded the matrix like determinant without telling that you are using determinant expansion as matrix can’t be expanded like this this-
@jayasimhayenumaladoddi1602
@jayasimhayenumaladoddi1602 2 жыл бұрын
Can you please make a video on OLPP
@cinimenosh5013
@cinimenosh5013 6 ай бұрын
What the results tell or what it denote
@AmitPatel-cl6ou
@AmitPatel-cl6ou Жыл бұрын
Pls use presentation mode in jupyter so I can view code fonts large in mobile, thnks
@UnfoldDataScience
@UnfoldDataScience Жыл бұрын
Sure thanks
@kshitijjain1385
@kshitijjain1385 2 жыл бұрын
how are we calculating PC1 after projecting our data to new axis
@dhivyaakumar
@dhivyaakumar 2 жыл бұрын
Sir, how do i label or annotate the data point after clustering. I have used covid 19 data set for pca analysis
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Good question, take reference from original data rowwise.
@ketakishitut2713
@ketakishitut2713 Жыл бұрын
Thank you, but why do we do mean centered
@pratibhasingh1843
@pratibhasingh1843 2 жыл бұрын
Sir pls make videos in hindi also
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Will check the plan, thanks for watching.
@indiannationalist07
@indiannationalist07 2 жыл бұрын
What happen if we don don't pass n_components argument
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Suppose if I say n=1, n=2, it means we want those many principal components. If you don't pass this argument at all in sklearn, all component are kept which will be equal to no of feature
@shantanuarya3214
@shantanuarya3214 2 жыл бұрын
@@UnfoldDataScience How do you decide what should be the optimal number for "n" ?
@mustafachenine7942
@mustafachenine7942 2 жыл бұрын
thank you
@mustafachenine7942
@mustafachenine7942 2 жыл бұрын
Is it possible to have an example of pictures to classify them into two categories?
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
You're welcome
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
sure
@mustafachenine7942
@mustafachenine7942 2 жыл бұрын
@@UnfoldDataScience If the dimensions are reduced in pca and classification in knn is better , please
@mustafachenine7942
@mustafachenine7942 2 жыл бұрын
hi
@VKRealsta
@VKRealsta 2 жыл бұрын
I have one little doubt in python . If interviewer ask tell me about data types in python. Then what exactly we have to told . In our answers how I start . Can I start to data structure or start with saying numeric, logical, ....
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
You can say simple data type like string, number, Boolean Then come list, array, dict, set Then comes some specific data structure like namedtuple etc. Read about collection module.
@VKRealsta
@VKRealsta 2 жыл бұрын
@@UnfoldDataScience Thank you sir
@nerdymath6
@nerdymath6 2 жыл бұрын
How to find the value of pc1 using python code
@VivadiMusic
@VivadiMusic 2 жыл бұрын
How do we come up with the number for "n_components"?
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
For creating components, you can create all components, you can keep it default(equal to number of features) however, for choosing how many components for the next step, we see how many "minimum" Components can explain "maximum" Variance together. Let's say PC1 explains 80% variance PC2 explains 15% variance And rest All PC together explain remaining 5% of variance. In this case, we will choose only first two components, PC1 and PC2 for the next step. Just like we choose optimal number of K in K means cluster using elbow method.
@VivadiMusic
@VivadiMusic 2 жыл бұрын
@@UnfoldDataScience am just reading your comment while watching your Regularisation video. Thank you sooo much. ♥️
@Samtoosoon
@Samtoosoon Ай бұрын
14:37
@SatishKumar-yn8tr
@SatishKumar-yn8tr Жыл бұрын
you took and mentioned 2 by 2 matrix. but data u took for python is 3 by 2 (three students and two subjects). This cretes confusion. A is not square now. And you first showed plot of original data. Plots after PCA not shown in video. Please show these for better understanding.
@pforpray41
@pforpray41 2 жыл бұрын
Can you provide the source code..
@UnfoldDataScience
@UnfoldDataScience 2 жыл бұрын
Link in description
@AshwiniTekude
@AshwiniTekude Жыл бұрын
Well Explained.......Thank You!
PCA : the basics - explained super simple
22:11
TileStats
Рет қаралды 61 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
37:51
bayGUYS
Рет қаралды 382 М.
Turn Off the Vacum And Sit Back and Laugh 🤣
00:34
SKITSFUL
Рет қаралды 11 МЛН
Principal Component Analysis (PCA) - easy and practical explanation
10:56
StatQuest: Principal Component Analysis (PCA), Step-by-Step
21:58
StatQuest with Josh Starmer
Рет қаралды 3 МЛН
Principal Component Analysis in SPSS
20:13
the outlier 73
Рет қаралды 34 М.
PCA : the math - step-by-step with a simple example
20:22
TileStats
Рет қаралды 117 М.
Principal Component Analysis (PCA)
13:46
Steve Brunton
Рет қаралды 403 М.
Principal Component Analysis (The Math) : Data Science Concepts
13:59
Principal Component Analysis (PCA) | Can't get simpler!
18:25
Six Sigma Pro SMART
Рет қаралды 27 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
37:51
bayGUYS
Рет қаралды 382 М.