Access English, Hindi Course here - www.unfolddatascience.com/store Don't forget to register on the website, it's free🙂
@polinalee91282 ай бұрын
One of the best videos explaining the difference between wrapper and embedded models I've seen. You cleared up all confusion due to your balance of conciseness and level of detail. Bravo sir.
@UnfoldDataScience2 ай бұрын
Thank you
@saharyarmohammadtoosky Жыл бұрын
Very good explanation Aman, you are a good teacher, I follow your videos, very simple and understanding explanation, good luck!
@UnfoldDataScience Жыл бұрын
Your comments motivate me. Thank you so much.
@mansibisht5572 жыл бұрын
Thank you Aman!! Such crisp explanation!
@UnfoldDataScience2 жыл бұрын
My pleasure 😊
@subhajitroy48692 жыл бұрын
Awesome Sir!!!! Thanks a lot. You are a perfect Guru for any DS learner. Another request Sir, kindly make a detailed video on SVM. It would be really helpful for many of us.
@UnfoldDataScience2 жыл бұрын
Thanks a lot Subhajit, sure
@umasharma61192 жыл бұрын
Thanku Sir for this great explanation.
@pavansingara94082 жыл бұрын
very good explanation of the concepts
@UnfoldDataScience2 жыл бұрын
Thank you Pavan
@israrobinson51757 ай бұрын
Thank you for this
@sudhanshusoni15242 жыл бұрын
thanks for the awesome work!
@UnfoldDataScience2 жыл бұрын
Glad you found it helpful.
@sriamani2 жыл бұрын
Very Informative video,i have some doubts regarding forward feature selection 1. PCA with forward feature selection 2. feature names we have to select, k_features we have to give exactly 3 or 4, then how algorithm will select,and which features will select
@beautyisinmind21632 жыл бұрын
Sir, the combination of feature you got in your result is applicable for KNN only or same combination works for other model as well?????
@leamon90242 жыл бұрын
Hello Aman, thanks so much for the detailed explanation. Could you also talk about clustering based feature selection technique?
@Sagar_Tachtode_7772 жыл бұрын
Great video Aman! Thanks for sharing! Can u please tell which algorithm to use for product recommendation using demographic data like age, Salary, Gender, Occupation etc….???
@alishaparveen47352 жыл бұрын
Can we do wrapper method for feature selection in unsupervised learning data?
@akjasmin902 жыл бұрын
Hy, I really loved your video and appreciate your efforts in making such informative videos. I have 3 questions though. 1. In the video you have used the methods on numerical data can we use it on categorical? 2. We should use it before or after feature engineering? Like after making dummy variables and binning are data it requires? 3. In RFE -CV all the variables were showing as 1 i.e. important. Can you explain it a little bit? Or if you can direct me to some video.
@UnfoldDataScience2 жыл бұрын
Thanks Ayushi. 1. Some test can be used on numerical only. 2. Before only 3. Try with other data this will change, here the difference is not that much.
@Shivay_13572 жыл бұрын
Thanks
@fahadnasir16052 жыл бұрын
Aman, you said, in RFE, it is internally decided how the variables will be eliminated and in backward selection, we are passing knn model to remove the variables. BUT, in RFE you are passing a Linear Rgeression model, please explain
@FranklinKondum2 жыл бұрын
This is awesome! Please, I have a question: In the backward wrapper method of feature selection, how can I use my own "user defined" model. I have an already existing model, but i want to reduce the features. It is a linear equation: Y = 0.22D + 0.19E + 0.16F + 0.15G + 0.16H + 0.12K I want to do feature elimination without changing the coefficients.
@ajaykushwaha-je6mw2 жыл бұрын
Hi Aman, once we get the number of importance feature then we have to remove unwanted featured from X_train and X_test right ?
@UnfoldDataScience2 жыл бұрын
Yes, Both places. No need of these features ahead, just keep a track of what all we removed so that next time new data comes we know what to keep/remove.
@beautyisinmind21632 жыл бұрын
Sir do we need to apply all techniques(filter, wrapper, embedded) and see that which feature is important?
@UnfoldDataScience2 жыл бұрын
Yes if you have the infrastructure to support especially if your model is not doing good.
@skvali38102 жыл бұрын
can we do all this techniques inside a pipeline
@UnfoldDataScience2 жыл бұрын
You can do.
@UnfoldDataScience2 жыл бұрын
And take a call in the end based on results
@skvali38102 жыл бұрын
@@UnfoldDataScience thank you man
@zeeshankhanyousafzai52292 жыл бұрын
Hello sir What if features are categorical and discrete?
@UnfoldDataScience2 жыл бұрын
Test like chi square and some model based technique will be used.
@zeeshankhanyousafzai52292 жыл бұрын
@@UnfoldDataScience ok sir can you make a video on that as well?
@umasharma61192 жыл бұрын
If we have the domain knowledge I think we don't need to perform feature selection techniques ?
@UnfoldDataScience2 жыл бұрын
Then also we need to see , domain knowledge is what we know, "Data must tell its own story"
@umasharma61192 жыл бұрын
@@UnfoldDataScience Okay Sir.
@Fatima-gw7sm2 жыл бұрын
Cost of your data science course?
@UnfoldDataScience2 жыл бұрын
Please fill the form attached in the description of the video.