Unit 3.7 - Glide Planes and Wallpaper Groups

  Рет қаралды 34,178

Frank Hoffmann

Frank Hoffmann

Күн бұрын

Пікірлер: 32
@julietten5614
@julietten5614 6 жыл бұрын
You are a legend. Thank you for the very clear explanations.
@honestlordcommissarbrighte7921
@honestlordcommissarbrighte7921 4 жыл бұрын
Bless you sir, you just summarized my problem in minutes what two one hour and thirty minute lectures tried to do and failed miserably.
@narminsalimova7334
@narminsalimova7334 6 жыл бұрын
Just amazing! Can't be clearer explanation!
@bina5580
@bina5580 5 жыл бұрын
I am obsessed with your lectures !
@nuttyjamie2443
@nuttyjamie2443 2 ай бұрын
why p2mg can be abbreviated as pmg? Do a mirror plane and a glide plane automatically generate a 2-fold axis? ty for your awesome videos❤
@FrankHoffmann1000
@FrankHoffmann1000 2 ай бұрын
Thanks! Yes, exactly!
@abbes635
@abbes635 4 жыл бұрын
you are amazing, im graduating this year because of you thankyou❤️
@FrankHoffmann1000
@FrankHoffmann1000 4 жыл бұрын
Thank you very much for your kind words. Glad that you find these videos helpful.
@deathslayer1411
@deathslayer1411 5 жыл бұрын
Where is the glide plane on the p2mg image at the end? Could you explain that image in more detail please?
@FrankHoffmann1000
@FrankHoffmann1000 5 жыл бұрын
Have a look at the following image: crystalsymmetry.wordpress.com/fig_4-18/
@suvarnnacokepaishatsa8195
@suvarnnacokepaishatsa8195 5 жыл бұрын
Thank you very much! Your materials can be understood easily.
@FrankHoffmann1000
@FrankHoffmann1000 5 жыл бұрын
Thank you very much - you are very welcome!
@wenwuxu6300
@wenwuxu6300 3 ай бұрын
Dear Frank, Thank you very much for another excellent lecture. I'm currently trying to understand the plane point group (wallpaper group) p2mg for the pattern shown at the end of the video. The first three symbols-p2m-make sense to me: p represents the primitive rectangular lattice, 2 indicates the two-fold rotational symmetry, and m refers to the mirror lines along the diagonal direction of the pattern. If we assume the mirror line is perpendicular to the x-axis of the lattice, the y-axis would then lie along the diagonal. However, when I try to identify the fourth symbol, I don't observe a glide symmetry with a ½ translation along the y-axis. Instead, it appears to have a full unit length translation. Interestingly, along the x-axis, I do see a ½ translation associated with the glide symmetry. To summarize, I can identify both mirror and glide (with ½ translation) symmetries when viewed along the x-axis, but not a combination of one mirror along the x-axis and one glide along the y-axis. Given this, how is the wallpaper group classified as p2mg? Thank you so much!! Best, Wenwu
@FrankHoffmann1000
@FrankHoffmann1000 3 ай бұрын
Can you give me your eMail adress? I can send you at least the solution in which the symmetry elements are overlaid to the pattern.
@kamalgurnani924
@kamalgurnani924 5 жыл бұрын
Could you please explain how do we decide 'p' or 'c' in the p2mg image shown at the end of the video? Thanks for such a clear presentation.
@FrankHoffmann1000
@FrankHoffmann1000 5 жыл бұрын
Look for the smallest possible unit cell - is this cell already rectangular (angle of 90°)? Then take 'p'! And then the cell should consists of exactly one motif. In a c-centered cell, there were already two motifs in the cell. You would only choose 'c', if the primitive cell had an angle ≠ 90°.
@gracesolante7357
@gracesolante7357 4 жыл бұрын
Thank you for this. Where can i find the notation names for all those 17 patterns?
@FrankHoffmann1000
@FrankHoffmann1000 4 жыл бұрын
en.wikipedia.org/wiki/List_of_planar_symmetry_groups
@wiwiwi6446
@wiwiwi6446 Жыл бұрын
Hi! question, in minute 7:05 tiy say 5 bravais lattices and 17 plane groups. Shouldn't it be 7 and 14?
@FrankHoffmann1000
@FrankHoffmann1000 Жыл бұрын
No - you're probably thinking of the number of crystal systems (7) and Bravais lattices (14) in 3D space. The number of space groups is then 230. But here we discuss the symmetry of the plane, i.e. we are in 2D. There are 4 crystal systems, 5 Bravais lattices and 17 plane groups.
@wiwiwi6446
@wiwiwi6446 Жыл бұрын
@@FrankHoffmann1000 Oh right! Sorry I mixed stuff up. THnak you for answering!!
@tengocaries
@tengocaries 3 жыл бұрын
Thank you so much, you are an amazing teacher! :)
@meetatrivedi7332
@meetatrivedi7332 5 жыл бұрын
Thanks for the lectures, can you please explain Fmmm too?
@FrankHoffmann1000
@FrankHoffmann1000 5 жыл бұрын
Fmmm is not a plane group but a space group - please refer to the units of chapter 4
@asailingstone
@asailingstone 5 жыл бұрын
where can I find all lecture videos?
@FrankHoffmann1000
@FrankHoffmann1000 5 жыл бұрын
kzbin.info/door/ts9FTFNInqTMvcFpdyap7wvideos?disable_polymer=1
@Brucebod
@Brucebod 2 жыл бұрын
Thank you.
@azrulazwan6101
@azrulazwan6101 6 жыл бұрын
tq for the video
@beyelear9665
@beyelear9665 2 жыл бұрын
Dear Sir, Thank you for your great work! I have a question: for the notation say "P3m1", it has a mirror plane perpendicular to the x-axis, but no mirror/glide plane to the y-axis, but how should we define the x and y axis? I'm comparing P3m1 and P31m, they both have the same type of primitive cell with edges 120/60 degrees to each other, I tried to make two neighboring edges of the cell as x-axis and y-axis, but find it hard to explain the mirror plane perpendicular to axis then.
@FrankHoffmann1000
@FrankHoffmann1000 2 жыл бұрын
For these complicated cases it is always advisable to have a look at the International Tables for Crystallography. First of all, it might be allowed to correct your first statement. In the trigonal crystal system the x and y axis are identical / symmetry equivalent. This means that in the space group P3m1 you have mirrors perpendicular to the x _and_ the y axis. For this reason you are free to define any of the two axes as x or y. The more difficult case is indeed the other space group P31m, whoch can be described as a variant of the space group P3m1 with a different setting (actually the coordinate sytem is rotated by 30° with respect to P3m1). Here the two mirror planes are perpendicular to the direction [210] and [120], directions that are not perpendicular to the x or y axis, indeed. For a sketch of the somewhat simplified (leaving out the glides) symmetry element diagrams see: crystalsymmetry.files.wordpress.com/2022/02/p3m1_vs_p31m.pdf
@beyelear9665
@beyelear9665 2 жыл бұрын
@@FrankHoffmann1000 Thank you very much! So the only difference is how the two mirror planes are placed.
@FrankHoffmann1000
@FrankHoffmann1000 2 жыл бұрын
@@beyelear9665 Exactly!
Unit 3.8 - Summary, Outlook, Tipps
3:07
Frank Hoffmann
Рет қаралды 9 М.
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
Каха и дочка
00:28
К-Media
Рет қаралды 3,4 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
The Beauty of Symmetry: An Introduction to the Wallpaper Group
19:02
Dr. Trefor Bazett
Рет қаралды 22 М.
Frieze Patterns
9:50
Sven Cattell
Рет қаралды 17 М.
Unit 4.5 - Space Groups and Space Group Symbols
12:41
Frank Hoffmann
Рет қаралды 168 М.
Diffraction Lecture 6: 2D Plane Group Symmetry
24:50
Pat's Perovskites
Рет қаралды 12 М.
2D symmetry example
28:31
Patrick Shamberger
Рет қаралды 1,2 М.
Unit 3.1 - Identity and Mirror Symmetry
9:02
Frank Hoffmann
Рет қаралды 31 М.
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 195 М.
Unit 3.2 - Rotational and Mirror Symmetry
8:18
Frank Hoffmann
Рет қаралды 19 М.
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН