Universal Modus Tollens Rule

  Рет қаралды 22,906

Neso Academy

Neso Academy

Күн бұрын

Пікірлер
@the_ocean_eyes
@the_ocean_eyes 3 жыл бұрын
1) Let, P - x is computer science major. Q - x is taking discrete maths course. For all P(x) -> Q(x) Q(riya) P(riya) -> Q(riya) -By universal --------------------------- So, P(riya) - Fallacy 2) Let, P - x eats granola everyday. Q - x is healthy. For all P(x) -> Q(x) ~ Q(Linda) P(Linda) -> Q(Linda) -By universal --------------------------- So, ~ P(Linda) -Modus Tollens
@SamSam-gx9ql
@SamSam-gx9ql 3 жыл бұрын
1.) False (Fallacy of Affirming Conclusion) 2.) True (Universal Modus Tollens)
@emadalomran8719
@emadalomran8719 3 жыл бұрын
My u explain the why the first one is false?
@SamSam-gx9ql
@SamSam-gx9ql 3 жыл бұрын
@@emadalomran8719 basically it's just P1: C -> D P2: D therefore C which is false because it's Fallacy of Affirming Conclusion
@JD-eb5qu
@JD-eb5qu 3 жыл бұрын
1.)I think 1st sentence false 2.)1. For all x{p(x)->q(x)} -premise 2. ~q(linda)-premise 3.P(linda)->q(linda)-[universal instantiation from 1] 4.~p(linda)[modus stollen from 2,3] ~p(linda) So this is TRUE according to UNIVERSAL MODU'S STOLLEN RULE Sir thanks a lot indeed sir this is very useful to me my text book couldn't help to me but your explanation is helpful very much 👌🙏🙏🙏
@rajeshprajapati1851
@rajeshprajapati1851 Жыл бұрын
Finished Chapter 1 and Chapter 2. Thank you so much !!
@saswateesahoo7440
@saswateesahoo7440 3 жыл бұрын
Thank you so much sir for this amazing explanation
@jayxcoder
@jayxcoder Жыл бұрын
a) False, Fallacy of affirming the conclusion. b) True, Universal Modus Tollens
@saimalli3741
@saimalli3741 3 жыл бұрын
Let p(x) denotes "x is a computer science" Q(x) denotes "x takes discrete mathematics course" a)1.forall x(p(x)->q(x)) premise 2.p(ria) premise 3.p(ria)->q(ria) (by universal Instantiation (1)) 4.q(ria) (by modus ponens from2&3)
@vishwajit9290
@vishwajit9290 3 жыл бұрын
Wrong answer coz it's seems like it is right argument but it's not, it's a fallacy.
@Tera_Baap25
@Tera_Baap25 2 жыл бұрын
@@vishwajit9290 what is fallacy means bro?
@CHATUR__RAMALINGAM
@CHATUR__RAMALINGAM 3 жыл бұрын
i liked this channel very much. but sir i want give you a tip that you are not making playlist names of recent videos , for example your playlist analog electronics consist of serial videos arranged together so for new subscribers it becomes easy to study , what they want to.
@Lavkush23424
@Lavkush23424 3 жыл бұрын
Nice explained
@brahmanandakabi8796
@brahmanandakabi8796 3 жыл бұрын
Thank you sir
@acriziosouza
@acriziosouza 2 жыл бұрын
Modus Ponens: p -> q OR [(p -> q) ^ p] -> p p _____ q Modus Tollens: p -> q OR [(p -> q) ^ ¬q] -> ¬p ¬q _____ ¬p Universal Instantiation: this rule is used to conclude that P(c) is true when ∀xP(x) is true. ∀xP(x) ______ P(c) A) Let P(x) denotes "x is a computer science major" Q(x) denotes "x takes discrete mathematics course" ∀x(P(x) -> Q(x)) Premise Q(Ria) Premise P(Ria) -> Q(Ria) By universal instantiation from (1) P(Ria) = ? Fallacy -> Affirming the consequence (Ria could take discrete mathematics course and not being a computer science major) B) Let P(x) denotes "x eats granola everyday" Q(x) denotes "x is healthy" ∀x(P(x) -> Q(x)) Premise ¬Q(Linda) Premise P(Linda) -> Q(Linda) By universal instantiation from (1) ¬P(Linda) Modus tollens from (2) and (3)
@harshsharma5768
@harshsharma5768 3 жыл бұрын
First is false and second one is true ?
@JD-eb5qu
@JD-eb5qu 3 жыл бұрын
I think so bro
@kunaldhyani
@kunaldhyani 2 жыл бұрын
1) False 2) True
@shivajichalise_
@shivajichalise_ 2 жыл бұрын
HELP! Everyone in math class loves proof. Someone in math class have never taken calculus. Conclusion Someone who loves proof have never taken calculus.
@gamexd3228
@gamexd3228 3 жыл бұрын
Sorry To Say But I Am Watching This Playlist From beginning But After video No. 45 I am Not Able To Understand Your Videos I don't Know why I am not Able To Understand because i watched every video atleast 2 time but still the Concept Is Not Clear to Me This could be due to You Are Teaching Very Fast Or switching the topics fast Please don't Take It As hate Because i Love to watch your Videos So Take It As my Feedback "Thanks"
@LogicInfozRPKP
@LogicInfozRPKP 3 жыл бұрын
I am agree partially
@rajeshprajapati4863
@rajeshprajapati4863 2 жыл бұрын
He is teaching great. Just listen carefully and note things down. Everything is not available in presentation.
@cromzkiesvlog4307
@cromzkiesvlog4307 2 жыл бұрын
NBSC student!! Like this comment
@cromzkiesvlog4307
@cromzkiesvlog4307 2 жыл бұрын
NBSC student!! Like this comment
Set Theory (Basics of Sets)
5:27
Neso Academy
Рет қаралды 111 М.
Rules of Inference - Definition & Types of Inference Rules
7:44
Neso Academy
Рет қаралды 667 М.
ЛУЧШИЙ ФОКУС + секрет! #shorts
00:12
Роман Magic
Рет қаралды 39 МЛН
FOREVER BUNNY
00:14
Natan por Aí
Рет қаралды 17 МЛН
When Cucumbers Meet PVC Pipe The Results Are Wild! 🤭
00:44
Crafty Buddy
Рет қаралды 49 МЛН
Real Man relocate to Remote Controlled Car 👨🏻➡️🚙🕹️ #builderc
00:24
Logical Arguments - Modus Ponens & Modus Tollens
8:44
Dr. Trefor Bazett
Рет қаралды 396 М.
Existential Quantifiers
4:06
Neso Academy
Рет қаралды 131 М.
Universal Modus Ponens Rule
2:51
Neso Academy
Рет қаралды 34 М.
Inclusion vs. Membership
7:25
Neso Academy
Рет қаралды 41 М.
RULES of INFERENCE - DISCRETE MATHEMATICS
12:59
TrevTutor
Рет қаралды 606 М.
Deduction Rules: Modus Ponens and Modul Tollens
3:34
Mathispower4u
Рет қаралды 7 М.
Quantifiers
5:05
Neso Academy
Рет қаралды 425 М.
Universal Quantifiers
3:48
Neso Academy
Рет қаралды 197 М.
ЛУЧШИЙ ФОКУС + секрет! #shorts
00:12
Роман Magic
Рет қаралды 39 МЛН