1) Let, P - x is computer science major. Q - x is taking discrete maths course. For all P(x) -> Q(x) Q(riya) P(riya) -> Q(riya) -By universal --------------------------- So, P(riya) - Fallacy 2) Let, P - x eats granola everyday. Q - x is healthy. For all P(x) -> Q(x) ~ Q(Linda) P(Linda) -> Q(Linda) -By universal --------------------------- So, ~ P(Linda) -Modus Tollens
@SamSam-gx9ql3 жыл бұрын
1.) False (Fallacy of Affirming Conclusion) 2.) True (Universal Modus Tollens)
@emadalomran87193 жыл бұрын
My u explain the why the first one is false?
@SamSam-gx9ql3 жыл бұрын
@@emadalomran8719 basically it's just P1: C -> D P2: D therefore C which is false because it's Fallacy of Affirming Conclusion
@JD-eb5qu3 жыл бұрын
1.)I think 1st sentence false 2.)1. For all x{p(x)->q(x)} -premise 2. ~q(linda)-premise 3.P(linda)->q(linda)-[universal instantiation from 1] 4.~p(linda)[modus stollen from 2,3] ~p(linda) So this is TRUE according to UNIVERSAL MODU'S STOLLEN RULE Sir thanks a lot indeed sir this is very useful to me my text book couldn't help to me but your explanation is helpful very much 👌🙏🙏🙏
@rajeshprajapati1851 Жыл бұрын
Finished Chapter 1 and Chapter 2. Thank you so much !!
@saswateesahoo74403 жыл бұрын
Thank you so much sir for this amazing explanation
@jayxcoder Жыл бұрын
a) False, Fallacy of affirming the conclusion. b) True, Universal Modus Tollens
@saimalli37413 жыл бұрын
Let p(x) denotes "x is a computer science" Q(x) denotes "x takes discrete mathematics course" a)1.forall x(p(x)->q(x)) premise 2.p(ria) premise 3.p(ria)->q(ria) (by universal Instantiation (1)) 4.q(ria) (by modus ponens from2&3)
@vishwajit92903 жыл бұрын
Wrong answer coz it's seems like it is right argument but it's not, it's a fallacy.
@Tera_Baap252 жыл бұрын
@@vishwajit9290 what is fallacy means bro?
@CHATUR__RAMALINGAM3 жыл бұрын
i liked this channel very much. but sir i want give you a tip that you are not making playlist names of recent videos , for example your playlist analog electronics consist of serial videos arranged together so for new subscribers it becomes easy to study , what they want to.
@Lavkush234243 жыл бұрын
Nice explained
@brahmanandakabi87963 жыл бұрын
Thank you sir
@acriziosouza2 жыл бұрын
Modus Ponens: p -> q OR [(p -> q) ^ p] -> p p _____ q Modus Tollens: p -> q OR [(p -> q) ^ ¬q] -> ¬p ¬q _____ ¬p Universal Instantiation: this rule is used to conclude that P(c) is true when ∀xP(x) is true. ∀xP(x) ______ P(c) A) Let P(x) denotes "x is a computer science major" Q(x) denotes "x takes discrete mathematics course" ∀x(P(x) -> Q(x)) Premise Q(Ria) Premise P(Ria) -> Q(Ria) By universal instantiation from (1) P(Ria) = ? Fallacy -> Affirming the consequence (Ria could take discrete mathematics course and not being a computer science major) B) Let P(x) denotes "x eats granola everyday" Q(x) denotes "x is healthy" ∀x(P(x) -> Q(x)) Premise ¬Q(Linda) Premise P(Linda) -> Q(Linda) By universal instantiation from (1) ¬P(Linda) Modus tollens from (2) and (3)
@harshsharma57683 жыл бұрын
First is false and second one is true ?
@JD-eb5qu3 жыл бұрын
I think so bro
@kunaldhyani2 жыл бұрын
1) False 2) True
@shivajichalise_2 жыл бұрын
HELP! Everyone in math class loves proof. Someone in math class have never taken calculus. Conclusion Someone who loves proof have never taken calculus.
@gamexd32283 жыл бұрын
Sorry To Say But I Am Watching This Playlist From beginning But After video No. 45 I am Not Able To Understand Your Videos I don't Know why I am not Able To Understand because i watched every video atleast 2 time but still the Concept Is Not Clear to Me This could be due to You Are Teaching Very Fast Or switching the topics fast Please don't Take It As hate Because i Love to watch your Videos So Take It As my Feedback "Thanks"
@LogicInfozRPKP3 жыл бұрын
I am agree partially
@rajeshprajapati48632 жыл бұрын
He is teaching great. Just listen carefully and note things down. Everything is not available in presentation.