This is like playing a card game where you could have defeated your enemy long ago but want to show off how nicely your cards synergise together and pulling off a huge combo
@ProgThoughts3 жыл бұрын
Lmao!!
@thomascioban39973 жыл бұрын
You play YuGiOh? Lol
@clemverpomtato3 жыл бұрын
my legend of runeterra ass is laughing rn
@incription3 жыл бұрын
MISSED LETHAL
@mikplaysthings32283 жыл бұрын
Magic: The Gathering players be like
@txikitofandango3 жыл бұрын
Now go in the opposite direction: explain integrals not in terms of Riemann sums, but only with binomial expansion
@herbie_the_hillbillie_goat3 жыл бұрын
That sounds like fun. 😁
@juanpedro198409143 жыл бұрын
And then, explain tetration in terms of arithmetic sums.
@bprpcalculusbasics3 жыл бұрын
😮
@da47623 жыл бұрын
Lol, that's basically how Newton did it XD.
@luisapaza3173 жыл бұрын
Eternal suffering
@mtrichie1113 жыл бұрын
I honestly think this is hilarious, because its ironic how thats the long way to do something simple, however, its a smart way of learning more tools of calculus using such fundamental equations that you know if you're doing it wrong or right. I love this !
@hannevanderven52303 жыл бұрын
Honestly I got kinda annoyed watching this video but I like your perspective so maybe I should calm down a little xD
@kinshuksinghania42893 жыл бұрын
Now that's what I call 'Calculus'
@corymitchell32283 жыл бұрын
What's calcoolus?
@bprpcalculusbasics3 жыл бұрын
@@corymitchell3228 is that a stand and deliver reference?
@corymitchell32283 жыл бұрын
@@bprpcalculusbasicsabsolutely 😂
@charleswolfe6193 жыл бұрын
No one is talking about how smoothly the color of the markers is swapped out
@Insightfill2 ай бұрын
It's been "his thing" for a long time now (bprp=black pen red pen) and still remains a beautiful thing to see. Agreed!
@herbie_the_hillbillie_goat3 жыл бұрын
This is some serious outside-the-box problem solving.
@spudhead1693 жыл бұрын
I've seen a few ways to show this, never with integrals though. Fascinating.
@jackiesharp0183 жыл бұрын
This actually taught me alot more about the content of my first quarter of AB AP CALCULAS than the class and the 36 hours of homework every two days. Seriously. That uses something I understand and just expands upon it with new ideas that the new ideas fit in perfectly!
@localverse3 жыл бұрын
Merely curious (watched video without understanding it), does the video show a better way than the FOIL method? (first, out, in, last) Is the video showing a better alternative? (a calculus method)
@bulldozer89503 жыл бұрын
@@localverse no. Potentially in some specific situations it could be simpler, but in the vast majority of cases, no. It would take longer because foil is just doing multiplication 4 times, which is not that hard by comparison to what he showed. However, this would be a pretty good way to introduce some concepts of integrals, particularly because it makes use of so many concepts
@localverse3 жыл бұрын
@@bulldozer8950 oh, because of video's title, I thought he was saying to use this method instead of FOIL
@baptiste52163 жыл бұрын
You inspired me, I'll try do do the same for (x+y)³ Edit : I did (x+y)³ but i have no clue about how to prove (x+y)(x-y) = x² - y² using integrals
@skylardeslypere99093 жыл бұрын
Challenge: try to do it for (x+y)^n, where n is any natural number
@degeneratedeuterium51643 жыл бұрын
@@skylardeslypere9909 extend the set of n variable to the reals, and then prove that 😈
@samuelgunter3 жыл бұрын
@@degeneratedeuterium5164 let n be any complex number ...
@notdumbrella63993 жыл бұрын
@@samuelgunter ....
@francescocostanzo82253 жыл бұрын
@@samuelgunter I don't even know how(or what it means) to take a natural number to a complex number let alone a binomial of the set of complex numbers
@kuzhii84163 жыл бұрын
Pascal’s triangle: “am I a joke to you?”
@Jaekyan3 жыл бұрын
please do one with (x+y)^n i think that would be so cool!
@sh0ck3r483 жыл бұрын
dudes marker swapping game is on point!
@arimermelstein91673 жыл бұрын
You can tell students until they get used to the “dummy variable” idea that you can just do a trivial substitution of t=u. Obviously, the bounds don’t change and the dt=du.
@OrigamiCL3 жыл бұрын
I also like the explanation of not putting too much stock in what each variable is called since it was a 'definition integral' so to speak
@stewartzayat75263 жыл бұрын
I personally think of the variable of integration as a parameter, or a real valued index - it has a similar interpretation as a sumation index. It's basically a formal variable with no real meaning or value
@txikitofandango3 жыл бұрын
How do you get 2u + 2x from 2(u + x)?
@SupraaHero3 жыл бұрын
Lol, multiply the 2 two each of the components inside the parentheses. For example: 3(2 + 2) = 3*2 + 3*2 = 12. Although intuitively this is not how it's normally done because you would normally first compute 2+2 and then multiply but this is just factoring out the expression which is what was done in the original 2(u + x). You can always check this work by multiplying and then factoring out. 2(u + x), multiply and expand, 2u + 2x. Notice how each component has a factor of 2, you can divide and "pull out" a 2 from each component. So we now have the original 2(u + x).
@BroArmyCommander3 жыл бұрын
@@SupraaHero This may have been a diss on FOIL
@txikitofandango3 жыл бұрын
@@BroArmyCommanderGlad someone got my point. Although, as someone below pointed out, you don't have to distribute to find it. You can just add a copy of u + x to itself, reorder the addends, and "combine like terms" which is really a form of factoring.
@BroArmyCommander3 жыл бұрын
@@txikitofandango Yeah I guess it would have to be two binomials to call it FOIL so I understand somebody might not get it haha
@jancermak19883 жыл бұрын
@@txikitofandango Is not necessary to use FOIL. 2(u+x)=(u+x)+(u+x)=u+u+x+x=2u+2x
@That_One_Guy...3 жыл бұрын
Next do : how to prove e^(x+y) = e^x * e^y using calculus and only left hand
@rileyborgard80203 жыл бұрын
Now how to show that the derivative of x^2 is 2x without applying the FOIL method on the (x + h)^2 term?
@nobivy35243 жыл бұрын
lol.
@bprpcalculusbasics3 жыл бұрын
😂
@bprpcalculusbasics3 жыл бұрын
I am thinking to use logarithm differentiation. But I think there’s a better way.
@Anonymous-df8it3 жыл бұрын
@@bprpcalculusbasics *WITHOUT* applying FOIL!
@nikolaimerritt92283 жыл бұрын
Product rule on x² = x * x
@maowiisenseii14703 жыл бұрын
Oh man! I never thought of this. Change of space. This might be nice with some tedious algebraic work.
@_wetmath_3 жыл бұрын
im gonna assume that "cannot use foil" means cannot use distributive law. then how do you get from 2(u+x) to 2u + 2x?
@nicholashalliday84233 жыл бұрын
2(u+x) = (u+x) + (u+x) = u+u+x+x = 2u + 2x
@txikitofandango3 жыл бұрын
It's strange that someone would know how to factor out 2 but not know how to distribute 2
@anshumanagrawal3463 жыл бұрын
Well, your assumption is wrong
@JJCUBER3 жыл бұрын
No, cannot use foil means cannot distribute for something of the form (a+b)(c+d); foil stands for first outside inside last. Regardless, the whole point of BPRP’s exercise is to better understand how to manipulate integrals, so he can define the exercise however he wants.
@francescocostanzo82253 жыл бұрын
That's what I'm thinking!
@lukeeatschips63242 жыл бұрын
Calculus : 5+ minutes to just solve simple multiplication Algebra : Does it in half a minute at most
@dużapoduszka3 жыл бұрын
Why would I want to use this long and convoluted method if standard FOIL method (or other methods like FOIL) are much quicker?
@NoovGuyMC3 жыл бұрын
Because memes are memes and the meme flies over your head, in fact fly higher by lim X->0 (170/X)
@dużapoduszka3 жыл бұрын
I don't think the guy did it just for memes.
@NoovGuyMC3 жыл бұрын
@@dużapoduszka eh I assume jjust because of his name
@yea95973 жыл бұрын
It’s just a demonstration that calculus can be used in a bunch of problems even when not seemingly related. The purpose isn’t to make a new way of expanding brackets but rather a practice problem to improve calculus skills.
@jakegmnlo6411 Жыл бұрын
This is circular logic because the definition of dx^2/dx requires you to use FOIL when expanding (x+h)^2
@tuan_ha Жыл бұрын
Maybe we shall replace x and y by a and b, respectively, so that there is no confusion on x and y being constants.
@jackkalver4644 Жыл бұрын
This works for higher powers too! Can you use this to prove the binomial theorem? How about for fractional values?
@panostriantaphillou37023 жыл бұрын
Confucious, you are amazing as always!
@jamisonhodges41693 жыл бұрын
Cool question! Just a nitpicky thing, but shouldn't we clarify that y>0?
@141Zero3 жыл бұрын
What about +C?
@thesnakednake3 жыл бұрын
Since it’s definite integration, when going from a to b, it’s F(b) - F(a). That makes it so you have C - C
@sremagamers3 жыл бұрын
Interesting. Is there any way to define integration without talking about R being a ring? If not then this is interesting, but unfortunately circular.
@rusokana36423 жыл бұрын
Why is x considered a constant?
@virajagr3 жыл бұрын
When defining x, we are using x in the upper bound of the integral, isn't that wrong?
@baptiste52163 жыл бұрын
The equality in itself is true. However indeed, I don't think this is a valid definition of x. But the point is not to rigourosly prove this equation, but rather proving it in a fun way.
@tyler_schecter58053 жыл бұрын
No
@matthewfuerst64563 жыл бұрын
x and y were just constants throughout this video so i think defining x in terms of itself is fine? it was only used to show a useful substitution anyway
@dVPulse2 жыл бұрын
When writing t = u + x, wouldnt dt/du = 1 + dx/du? Edit: x and y are not variables here, they will be some fixed numbers, so dx/du = 0 for any constant x
@benjaminkern25863 жыл бұрын
I understand maybe two words a video and yet I’m subscribed
@cbayoo94053 жыл бұрын
ok ok, i got one. Which came first? The foil way? Or the Elite 4 member's way? Serious question tho lol. Is this a way to mega prove it orrrrr just another way to do things. Like dexters lab opening scene?
@Wayyan-v9 күн бұрын
When the teacher asks to show your work.
@bug56543 жыл бұрын
This feels wrong because it doesn't appear to break with non-abelian groups? (still gives x^2+2xy+y^2 instead of x^2+xy+yx+y^2). Or am I missing something like integration itself changes enough to fix it in non-abelian groups?
@rainbowunicode83523 жыл бұрын
Commutativity is assumed when rewriting the integral int(2(x+y)) as int(2x + 2y), as we are avoiding distribution and have to fall back on the definition of integer multiplication as repeated addition. I believe that's where things fall apart for non abelian groups; there's not an obvious way to simplify x+y+x+y.
@mattwyes3 жыл бұрын
I need an example
@bprpcalculusbasics3 жыл бұрын
See description I have an intro there
@Jonathondelemos3 жыл бұрын
Nicely done
@NeverSaid-3 жыл бұрын
What is the problem with x*x+y*y+x*y+y*x. Why do you even need the integral and pseudovariables.
@irwandasaputra93152 жыл бұрын
x^2+2xy+y^2
@Sheikxlove1233 жыл бұрын
Try higher powers and complicated variables
@DetectiveAndrey3 жыл бұрын
Why is dt equal to du exactly? Also, could one do a general case this way? (x+y)^n?
@ZipplyZane3 жыл бұрын
You start with t=u+x and differentiate both sides (using implicit differentiation). That gives you dt = d(u+x). x is a constant (as it does not change when you calculate the integral) so the derivative of u+x is just du. Or, to out it another way, you can say you get dt = du + dx. But x doesn't change since it's not inside the integral. Thus the change in x or dx = 0.
@DetectiveAndrey3 жыл бұрын
@@ZipplyZane, ah thx, understood.
@JM-us3fr3 жыл бұрын
Unfortunately this is circular, since the power rule for derivatives and integrals requires the binomial theorem.
@bprpcalculusbasics3 жыл бұрын
I did not take the derivative or the integral tho. I only used the properties of the integral.
@JM-us3fr3 жыл бұрын
@@bprpcalculusbasics But evaluating the integral of 2t to get x^2 uses the power rule for integrals, which uses the binomial theorem. I suppose you could do it using Riemann Sums and a limit, but that's a bit ad hoc.
@chasewilber93253 жыл бұрын
@@JM-us3fr he was given the definition in the problem, so he did not use the power rule for integrals, even if it would have led to the same answer. he was only applying the definitions
@johnbutler46313 жыл бұрын
Even if he did use the power rule, it can be derived without the binomial theroem. It can be derived using exponentials and logarithms.
@JM-us3fr3 жыл бұрын
@@chasewilber9325 But you can’t define the integral that way while also using other properties of the integral, such as linearity and u-substitution. These suggest a different definition of the integral; one that would require the power rule to give the x^2 identity.
@Nyx_Room3 жыл бұрын
Everyone : Solving math problem Me: Staring at his Poke Ball
@richardtrager71253 жыл бұрын
Binomial Theorem: Am I a joke to you?
@donrumata52993 жыл бұрын
There's a small problem: how would you get derivative for x^2 formula?
@bprpcalculusbasics3 жыл бұрын
😆
@carultch3 жыл бұрын
You can prove the power rule for all real bases and all real exponents, through the lograrithmic differentiation.
@Anonymous-df8it3 жыл бұрын
FOIL. Oh, wait. Circular logic!
@bathysphere10703 жыл бұрын
Leave it to a mathematician to make things far more complicated then they need to be. In the time it to took to do this for one problem anyone could have used FOIL on a dozen. Just use FOIL for order 2 polynomials, for anything higher just use the binomial expansion. It is far more efficient. Let mathematicians continue to engage themselves in theorems that have little bearing on practical application.
@DaFrancc3 жыл бұрын
Engineer getting paid by the hour be like
@joelyaw53893 жыл бұрын
I just opened another world for me to explore
@stapleman0073 жыл бұрын
Instead of walking to my mailbox to get my mail, I call an ambulance to go to the hospital, take a taxi to the airport, fly to a different city, take an Amtrak train back to my city, get an Uber ride to my house, get dropped of next to my mailbox, collect the mail, and ride my Segway back to my house.
@bprpcalculusbasics3 жыл бұрын
😆
@alexbair25423 жыл бұрын
ood?
@glitterishhh3 жыл бұрын
but u substitution uses algebraic techniques...
@hasanplaster15103 жыл бұрын
Just use (a+b) ^2=a^2+2ab+b^2
@NoovGuyMC3 жыл бұрын
That's FOIL and also against what he wanted
@armpitpuncher3 жыл бұрын
@@NoovGuyMC How can you tell he used FOIL? All he showed was the solution.
@NoovGuyMC3 жыл бұрын
@@armpitpuncher implying lol
@PhilippeCarphin3 жыл бұрын
That was very neat.
@nablahnjr.67283 жыл бұрын
but why though
@muhamadsadulla2 жыл бұрын
Thank for you
@costelnica39883 жыл бұрын
Super, but how do I solve n=? so that a=sqrt(n×radical of order3(n)) to be natural number?
@xinpingdonohoe39783 жыл бұрын
Radical of order 3? Do you mean cube root? Just use cbrt. And do you want a or n to be natural? Anyhow, n*cbrt(n)=n^(4/3). √(n^(4/3)) = n^(⅔). If a is in N, then n^⅔ is in N. Therefore, n must be the cube of an integer. So, if n=x³, a=x². Choose x is a natural number to have it. I think that's right.
@costelnica39883 жыл бұрын
@@xinpingdonohoe3978 Thank you very much! I understood the reasoning . I'm blocking it a=n^(2/3). I'm happy now!
@xinpingdonohoe39783 жыл бұрын
@@costelnica3988 no problem
@eliteteamkiller3193 жыл бұрын
This is amazing.
@JiffyJokes3 жыл бұрын
Nice gains bro
@toftimsecondaire3 жыл бұрын
Liked it !
@bprpcalculusbasics3 жыл бұрын
Thanks!!
@Andrumen013 жыл бұрын
I hope that you understand that you can do the same with Taylor series and all you are doing is making a sophisticated Taylor expansion...
@ayrthhhn3 жыл бұрын
WHAT???? I thought FOIL!!! was ALL there is
@Harison.3 жыл бұрын
I always watch these videos and have no idea what he is doing
@rainbowunicode83523 жыл бұрын
Good on you for watching anyway.
@kamikeserpentail37783 жыл бұрын
It's neat to see the calculus of it and all, but I'm pretty sure students learn foil before calculus. Besides, if you just draw a square of length and width x+y, you can clearly see the x^2 part, the y^2 part, and the two xy parts, so it should be pretty hard to get that wrong after a few times looking at what it is.
@bprpcalculusbasics3 жыл бұрын
Oh yea. That’s in my first part kzbin.info/www/bejne/r4OumZ-dltdgprs
@reidflemingworldstoughestm13943 жыл бұрын
This is what they should teach in Alg I
@official-obama3 жыл бұрын
let's assume that x+y = z so it's z*(x+y) using the distributive property, we can expand to (z*x)+(z*y) replace z with x+y so ((x+y)*x)+((x+y)*y) expand with distributive property again ((x*x)+(x*y))+((x*y)+(y*y)) clean up and rearrange x^2+2xy+y^2
@Anonymous-df8it3 жыл бұрын
You're only allowed to use calculus
@official-obama3 жыл бұрын
@@Anonymous-df8it calculate the integral of (x^2+1)*3
@official-obama3 жыл бұрын
@@Anonymous-df8it nowhere did he say we were only allowed to use calculus
@Anonymous-df8it3 жыл бұрын
@@official-obama x^3. So?
@Anonymous-df8it3 жыл бұрын
@@official-obama The title literally says 'Use Calculus, NOT Algebra FOIL'!
@solomonkim72853 жыл бұрын
Lowkey triggered cuz this made me remember that I had this question on a Calc exam back in high school (I’m graduating college soon) and I only know understand how it works…
@GDPlainA3 жыл бұрын
how it looks when i first learned (x+y)^2:
@irok13 жыл бұрын
This is just a "can we beat the game without pressing a" but without foiling
@rainbowunicode83523 жыл бұрын
Perfect metaphor for why a mathematician might enjoy this and so many others just think "what in tarnation"
@pandabearguy13 жыл бұрын
Just let (x+y)=1
@einsteingonzalez43363 жыл бұрын
Now the Freshman’s dream is finally dead.
@crep503 жыл бұрын
Bruh (x+y)(x+y) is literally just x^2+2xy+y^2??
@oak37853 жыл бұрын
oh man do i wanna go back to school?
@BigKnack3 жыл бұрын
This is awesome
@UnordEntertainment3 жыл бұрын
doesnt "t = u+x" imply "dt = du + dx"? havent done substitutions in a while and this part is confusing me, could someone explain? my working starts from "t = u + x" method 1: differentiate with respect to u then multiply by du t = u + x dt/du = 1 + dx/du dt = du + dx method 2: differentiate with respect to x then multiply by dx t = u + x dt/dx = du/dx + 1 dt = du + dx so both methods (if theyre right) lead to dt = du + dx not dt = du what am i doing wrong?
@sayarsine64792 жыл бұрын
Powerful
@skylight69043 жыл бұрын
Why on earth is this on recommendend? Google should know by now that I'm mathematically challenged.
@johnchristian50272 жыл бұрын
This is super overkill XD
@gabey.youngblood26133 жыл бұрын
Anybody else notice that foil had to be used after he used the u substitution?
@jaredjones65703 жыл бұрын
Add (u+x) to (u+x). Apply the associative property. So 2(u+x) = (u+x)+(u+x) = (u+u) + (x+x) = 2u + 2x by definition. The distributive property would have only been invoked if two polynomial factors were multiplied.
@joaobringel47123 жыл бұрын
Nice
@ronwilliams41843 жыл бұрын
I honestly loled...
@aBradApple3 жыл бұрын
Imagine teaching your kids calculus while they learn algebra…
@stevetabor26053 жыл бұрын
Where is the foil in your diagram? You show black and grey, but aluminum foil is shiny, like polished silver. You'll have to be more diligent about your representations. For many of us coming in from decades past, we were not trained to use aluminum foil in math, we had to use pencil and paper!
@monke35599 ай бұрын
ah yes, my "t = x integration technique" i havent used this since the heian era.
@ll-lw8vn3 жыл бұрын
is math all about making a elementary school level question to college school question?
@Anokosciant3 жыл бұрын
man, just use taylor formula with integral rest to do it
@planomathandscience3 жыл бұрын
How to waste time on a 2 second solution by making it overly complex.
@samuellima59683 жыл бұрын
Do the hard way instead easy way
@redacted30973 жыл бұрын
I mean.. that works too I guess 😂
@alkharage78633 жыл бұрын
What with the pokemon ?
@carultch3 жыл бұрын
It's his microphone.
@ChavoMysterio3 жыл бұрын
x^2+2xy+y^2...now let's see the proof using Calculus.
@justingreen80063 жыл бұрын
I'll stick with FOIL.
@danieljohnson4113 жыл бұрын
Distribution please no FOIL I fought this all the way out the door while teaching. I used to teach calculus as well. Just NO FOIL
@rainbowunicode83523 жыл бұрын
Lmao, right? Students understand foil, then see product of a binomial and trinomial and the engine stalls. Distributivity is my favorite arithmetic property; don't call it the ugly name FOIL.
@danieljohnson4113 жыл бұрын
I was trained to teach for understanding algorithmic learning although fast to get the answer it causes more problems down the line. Things like foil are there were introduced to help someone get their ph.d with no thought of what it does to the student in the long term
@landy44973 жыл бұрын
woah
@alexandrenascimento56013 жыл бұрын
How to complicate easy things. Seems shallow this type of computation.
@ryanbeaucage10683 жыл бұрын
40 seconds in and i'm lost.
@FroggieIsHere3 жыл бұрын
what
@bmar17843 жыл бұрын
This is a repeat isn't it. I feel like I've seen you do this before