I actually got the same answer by finding the first 2 terms in the binomial expansion of (2+x)^4, with x = -0.001. Neat!
@user-wu8yq1rb9t2 жыл бұрын
The Beautiful Mind, Dear Dr Barker is here ... Cool. Binomial? You made a video about it? I should check your channel, yes.
@kobethebeefinmathworld9532 жыл бұрын
I think this should always hold because the linearization method in calculus is using Taylor expansion and ignoring all terms after 2nd derivative, where the term with the 1st derivative is exactly the same expression as the 2nd term in the binomial expansion of the shifted function.
@teelo120002 жыл бұрын
How to approximate 1.999^4 whilst using a calculator: 1. type in 1.999^4 2. add 0.0000000001 to the answer, because we want an approximation, not the actual answer
@GodbornNoven2 жыл бұрын
lol
@geraltofrivia94242 жыл бұрын
Easier to use the formula directly with x = 1.999 and a= 2, that gives L(1.999) = 16 + 32*(-0.0001) = 16 - 0.032 = 15.968. Trying to simplify the general expression of L(x) leads to a more complicated calculation in this specific case.
@ChristAliveForevermore2 жыл бұрын
BPRP: use calculus to approximate 1.999^4 (no calculators) Also BPRP: *uses calculator*
@jamescollier32 жыл бұрын
forest trees
@ΑΝΤΩΝΗΣΠΑΠΑΔΟΠΟΥΛΟΣ-ρ4τ2 жыл бұрын
another way of calculating 32*1.999 at the last step of the linearization, could be writing 1.999=2-(1/1000) and then proceed with applying distributive property: 32*1.999-48 = 32* (2-1/1000) - 48 = 64 - 0.032- 48 = 16 - 0.032 = 15.968
@fadoexplains28372 жыл бұрын
Yup
@flowers421952 жыл бұрын
Yes good, the same as i thought that make it so easy without calculator
@yaskynemma92202 жыл бұрын
The first was easier to compute before distributing the 32, I even think that the 2 methods look the same in that step, but as always maybe there is a detail that dont make them the same and that I am missing because I am not a mathematician
@gerryiles39252 жыл бұрын
You should have left off at L(x) = 16 + 32 (x - 2), or better, since wanting to use a number less than 2, L(x) = 16 - 32 (2 - x), then it is basically the same as the differential method...
@bprpcalculusbasics2 жыл бұрын
Ah yes. That would have been much better
@NoNameAtAll22 жыл бұрын
dear Just Calculus, can you please add main channel (RedPenBlackPen) into "Channels" submenu of this channel? This would allow for better navigation on mobile than "main channel" button in "About" submenu
@helgen38212 жыл бұрын
Best approximation of (1.999)^4 is 2^4 I think
@nick462852 жыл бұрын
not accurate enough without calculus
@evanlawrence2 жыл бұрын
@@nick46285 As an engineer, this is good enough for me
@sleepingboiz81552 жыл бұрын
For me I just did 2 to the power of 4 then minus 0.032
@beabzk2 жыл бұрын
Him: no calculators Also him: uses calculator for 32(1.999)
@VincentCSPG3D2 жыл бұрын
I watched this before on your main channel and I liked it very much lol
@carlossecas2756 Жыл бұрын
great explanation
@lekanakinwale84112 жыл бұрын
Using binomial theorem to approximate>>>
@user-wu8yq1rb9t2 жыл бұрын
*Calculus not calculator* ... *I love it* Thank you Teacher 💖
@fernandofa20012 жыл бұрын
Very interesting!
@Anti_Electron2 жыл бұрын
I tried this method using a random number like (2.3)^4 but i didint get the same answer as the calculator. Is it because that this method Is used for certain numbers?
@chatzigeorgiougeorge8852 жыл бұрын
If the x (2.3) is further from your first guess (2), you need more terms in the linearization process. Or you use iterative techniques, like Newton-Raphson method.
@stefangrothe77662 жыл бұрын
2.3 if too far away from 2 for this method to work well.
@cesarmoreno987y2 жыл бұрын
For April fools you should have made a video titled “use a calculator not calculus”
@nanubhai79182 жыл бұрын
16 i guess lol
@justinbishop542 жыл бұрын
2
@BurningShipFractal Жыл бұрын
2^4=16, or even 0, is okay, he said approximate, but didn’t say how accurate
@finmat952 жыл бұрын
Useless
@zekecheng13392 жыл бұрын
The awake jason optically hug because defense neurally kill beyond a trite forecast. thoughtful, pushy sister