VECTOR SPACES - LINEAR ALGEBRA

  Рет қаралды 672,269

TrevTutor

TrevTutor

Күн бұрын

We introduce vector spaces in linear algebra.
#LinearAlgebra #Vectors #AbstractAlgebra
LIKE AND SHARE THE VIDEO IF IT HELPED!
Visit our website: bit.ly/1zBPlvm
Subscribe on KZbin: bit.ly/1vWiRxW
Like us on Facebook: on. 1vWwDRc
Submit your questions on Reddit: bit.ly/1GwZZrP
#LinearAlgebra #Algebra #UniversityMath #Lecture
-Playlists-
Linear Algebra: • Linear Algebra
-Recommended Textbooks-
Linear Algebra and Its Applications (Lay): amzn.to/37gBZ27
Linear Algebra Done Right (Axler): amzn.to/2T0GpBI
Introduction to Linear Algebra (Strang): amzn.to/3dC6kJq
Linear Algebra: Step by Step (Singh): amzn.to/2T33G65
3,000 Solved Problems in Linear Algebra (Lipschutz): amzn.to/3j2nJMw
In this video we talk about Vector Spaces and ask ourselves if some sets are vector spaces. We also talk about the polynomial vector space.
Hello, welcome to TheTrevTutor. I'm here to help you learn your college courses in an easy, efficient manner. If you like what you see, feel free to subscribe and follow me for updates. If you have any questions, leave them below. I try to answer as many questions as possible. If something isn't quite clear or needs more explanation, I can easily make additional videos to satisfy your need for knowledge and understanding.

Пікірлер: 127
@beedlejeedle
@beedlejeedle 3 жыл бұрын
dude you have no idea how much the visual representation helped; why my prof never explained this visually is beyond me
@nirupamayyagari6571
@nirupamayyagari6571 2 жыл бұрын
Ive been told so much that linear algebra focuses more on visualizing the actual spaces rather than functions. Ive watched videos and read material and somewhat understood it, but your drawings and this video and the functions you chose made that make so much more sense.
@andrewburnette9019
@andrewburnette9019 6 жыл бұрын
So far the best explanation on proving vector spaces.
@aasutoshthapa2820
@aasutoshthapa2820 3 жыл бұрын
Hey hey. I wanted to ask, does this cover the entire content of the chapter? I haven't watched my class lectures
@mardhiahmichael3343
@mardhiahmichael3343 3 жыл бұрын
Im crying because i dont understand vector space 😭😭😭😭😭😭. Why do i major in math, i can't even do this simple stuff😭😭😭😭😭
@farouk6437
@farouk6437 2 ай бұрын
lmaooo
@kalkidangebre8595
@kalkidangebre8595 14 күн бұрын
@@mardhiahmichael3343 Huh? I can help you
@jared9190
@jared9190 7 жыл бұрын
Helpful video. I was having a little trouble with this concept but your explanation and visuals were just what I needed.
@ruskodudesko9679
@ruskodudesko9679 7 жыл бұрын
agreed man - you may be a visual learner, I know I am.
@meensbeans_
@meensbeans_ 3 жыл бұрын
Thanks for this, I just started Vector Spaces and since I haven’t seen any examples of questions I wasn’t sure how it’s tested. I’m assuming the whole section is tested by proofs.
@Nini-vw2zn
@Nini-vw2zn 9 ай бұрын
Bruh, 5 minutes in, and I've already gained a clearer understanding of vector spaces than I ever did from attending a lecture and reading the syllabus
@johnaiii1281
@johnaiii1281 2 жыл бұрын
starting at 7:48 I don't get it, how do I turn from polynomial to a vector(with corresponding value for each coordinate or each dimension value)? 'cause vectors has a n x 1 size(n rows, 1 column). pls help
@lm58142
@lm58142 Жыл бұрын
Great video. Just one small note if I may - the non-integer (7/2) exponent in the example at 08:40 makes it a non-polynomial.
@pabloandres8757
@pabloandres8757 Жыл бұрын
I wanted to know why it would make it a non-polynomial
@daviduzumaki
@daviduzumaki 8 ай бұрын
because by definition of what a polynomial is, polynomials are not allowed to have non integer exponents@@pabloandres8757
@chillsway9550
@chillsway9550 4 жыл бұрын
Thank you for saving my final exam with this now I can get an A
@rael213rd
@rael213rd 3 жыл бұрын
Did you get an A?
@priskon5950
@priskon5950 3 жыл бұрын
@@rael213rd guess not.
@kendalkouamouyepmou2604
@kendalkouamouyepmou2604 Ай бұрын
@@priskon5950 😂😂
@shreyywadhwa
@shreyywadhwa 5 жыл бұрын
@8:58 Degree of a polynomial is always a positive integer, it cannot be in fraction. So that example is not a polynomial.
@thesorcererwiththepointyhat
@thesorcererwiththepointyhat 5 жыл бұрын
also the polynomial with zero degree is a non-zero real number ....the degree of the zero polynomial is undefined (or negative)
@lalith_kumar_akhila2411
@lalith_kumar_akhila2411 2 жыл бұрын
Excellent Explanation is an understatement..no words...thanks a ton
@gradf8678
@gradf8678 2 жыл бұрын
8:59 the polynomial in yellow is actually not a polynomial. 7/2 in power means it involves radicals.
@awaisnaeem4696
@awaisnaeem4696 2 жыл бұрын
u r right
@kathyw.854
@kathyw.854 7 жыл бұрын
You can't have a non-integer exponent on the variable, in a polynomial. I think a zero degree polynomial would just mean the exponent was 0, so it could be a constant other than 0.
@AlthafShameelPP
@AlthafShameelPP 7 жыл бұрын
Kathy W. yup. I was about to say that. that is not a polynomial in which 3.5 is in power..
@chiragsharma6215
@chiragsharma6215 6 жыл бұрын
@@AlthafShameelPP This same thing came in my mind too
@wontonzz1083
@wontonzz1083 4 жыл бұрын
This is instruction is so much easier to understand comparing to my prof ! ! !
@Nohope__
@Nohope__ Жыл бұрын
Professor Strang's linear algebra teaches you , 3Blue1Brown essence of linear algebra shows you, and then this channel saves you.
@Christian-mn8dh
@Christian-mn8dh 2 жыл бұрын
11:03 how is closure under addition satisfied? what if u + v = p(t) + (-p(t)) ?? that would be the 0 polynomial. confused
@hyderfocus6774
@hyderfocus6774 4 жыл бұрын
For the problem at 6:00, saying that if u=(-1,2) and (-1)(2) is not >= 0, this would be false right? As we cannot use a vector that is itself not in the W set?
@allipraveenkumar1107
@allipraveenkumar1107 4 жыл бұрын
The value of the "x" and "y" has no restriction in the givenvector space,the only restriction is that their product must be >0,so "-2*1=-2" which is kot greater than 0,so the result confirms that it's not a vector space. If you are wondering about(-3,-1) still the product of them will be 3>0 so holds on the given vector space as the condition is xy>0. Hope it helped.
@JosePablo24
@JosePablo24 7 жыл бұрын
simple and intuitive explanation, thanks a lot.
@exol_ruchan
@exol_ruchan Жыл бұрын
8:48 how is it a polynomial when the degree is a fraction (7/2)?
@saichaithrik7134
@saichaithrik7134 4 жыл бұрын
One of the best explanation ever
@simonelgarrad
@simonelgarrad 6 жыл бұрын
At 6:27,what were you saying 1 to the right 2 up and 3 to the left and 1 down? what does this mean?
@happygohil6551
@happygohil6551 2 жыл бұрын
here set of polynomial of degree
@sharonbell9047
@sharonbell9047 2 жыл бұрын
a very difficult topic for me became clear, thank you!
@Os_Bosniak
@Os_Bosniak 7 жыл бұрын
Degree of polynomial must be in N. 7/2 is not alowed to be a polynomial degree.
@AlthafShameelPP
@AlthafShameelPP 7 жыл бұрын
Osman Delic.. yup I was about to say that. that is not a polynomial..
@mahimapareek1301
@mahimapareek1301 4 жыл бұрын
Please share the link of your previous videos where you proved all these.
@jyc1815
@jyc1815 6 жыл бұрын
thank u for such a good lecture. i have a quick question, in polynomials, what if scalar is zero? is it still in the vector?
@koreshura641
@koreshura641 5 жыл бұрын
very late reply, but if you multiply by the scalar zero you get a 0vector, which is a vector
@tarkarslanoglu3690
@tarkarslanoglu3690 5 жыл бұрын
What if you scale your p(t) by zero. doesn't that make the degree zero?(for the last statement you proved!) Thank you for lectures btw.
@vivekgupta-ib1rd
@vivekgupta-ib1rd 7 жыл бұрын
if you could relate the topic with physical significance than that will be really great, again thank you very much for making video on these topics!!
@scottmoerschbacher8664
@scottmoerschbacher8664 6 жыл бұрын
I'd recommend referring to the candidate sets as "sets" or "candidate sets" and not "vector spaces," as a couple of times you said "the vector space is NOT a vector space." Potentially confusing for learners. Best wishes.
@aesophor
@aesophor 4 жыл бұрын
Whoever defined these is a bastard... they're just so confusing for newbies
@BZ-pv1xd
@BZ-pv1xd 3 жыл бұрын
and the fact that V can only be a vector space if it's a non-empty set
@Casual314aA
@Casual314aA 4 жыл бұрын
This is a great explanation. Thanks.
@korasimee
@korasimee Ай бұрын
pretty easy to understand, helpful video
@watashiwa_rin
@watashiwa_rin 3 жыл бұрын
very simple and clear explanation!
@edwardpanzi4196
@edwardpanzi4196 3 жыл бұрын
for 10:45, how can you add two vectors with different dimensions, they must have the same degree.
@vivekgupta-ib1rd
@vivekgupta-ib1rd 7 жыл бұрын
Thank you for making videos on LINEAR ALGEBRA.
@hahahahahohohoho5085
@hahahahahohohoho5085 3 жыл бұрын
But what if you multiply two polynomials of n degree? You end up outside the vector field. Also, what would be the 0 vector in this case?
@hahahahahohohoho5085
@hahahahahohohoho5085 3 жыл бұрын
@Aenon Solomon you're right. Multiplication isnt an axiom, I don't remember why I asked in the first place. I probably got confused with c multiplication. Thanks
@sulgunrejepova3867
@sulgunrejepova3867 5 жыл бұрын
Great explanation Sir big thanks
@jaysmith4302
@jaysmith4302 8 жыл бұрын
In your definition of V, why is it necessary to restrict c and d to the real number line? It seems like all those properties would hold just as well if c and d were complex.
@brandonlee2435
@brandonlee2435 7 жыл бұрын
conceptually because no imaginary numbers exist on the xyz plane period, so it could never be within V a vector space consisting of R all real numbers
@allipraveenkumar1107
@allipraveenkumar1107 4 жыл бұрын
Actually they can be complex numbers or rational numbers too.usually we prefer to define them.a real number line,but we have some vector spaces with scalars as complex numbers or rational numbers or just any field.
@salihsendil
@salihsendil 4 жыл бұрын
You saved my life
@shivangvijay9385
@shivangvijay9385 6 жыл бұрын
R^2 is a vector space over complex?
@misscocobellemamabolo7133
@misscocobellemamabolo7133 2 жыл бұрын
Please help me out because I'm a whole idiot. How do I answer a question such as this? Do I draw diagrams? Do choose two random x and y co-ords that contradict the vector space? What do I write in a test or exam?
@kasamadhu3509
@kasamadhu3509 3 жыл бұрын
Nice explanation
@jaideepkumarpm4769
@jaideepkumarpm4769 5 жыл бұрын
Is it necessary that addition is defined for all elements of vector space..or it is enough that the sum of defined elements exist within vector space. Consider Set of all matrixes(including different orders)
@nitink9879
@nitink9879 2 жыл бұрын
Do polynomials have directions?
@alaska9ine934
@alaska9ine934 2 жыл бұрын
is a polynomial of degree 2 a vector space?
@saichaithrik7134
@saichaithrik7134 4 жыл бұрын
Thanks you sir you are the best
@Jojo_clowning
@Jojo_clowning 4 жыл бұрын
I am still confused, im still stuck in the physics definition of a vector.
@danianaj4883
@danianaj4883 4 жыл бұрын
same bro. same
@debayondharchowdhury2680
@debayondharchowdhury2680 4 жыл бұрын
This is generalization of that physics vectors. These are basically the same vectors that you studied there but you didn't had to study their mathematical properties.
@danianaj4883
@danianaj4883 4 жыл бұрын
I received my final score in linear algebra yesterday, and to my surprise, I got 96!!! I was struggling to understand the lessons material, especially in the middle of this pandemic, and changing to virtual classes. To anyone reading this comment and facing some difficulties in linear algebra, believe me, you can get a high score in this subject with helping of youtube.
@standowner6979
@standowner6979 2 жыл бұрын
@@danianaj4883 Good for you! Next up,...
@redditindia01
@redditindia01 8 ай бұрын
RANK OF A MATRIX IS THE SAME AS THE DIMENSION OF ITS RANGE SPACE TRUE OR FALSE
@estebansanchezsevilla1930
@estebansanchezsevilla1930 2 жыл бұрын
great video, thanks!
@alanfate4853
@alanfate4853 6 жыл бұрын
What if V is negative? then u + v can be anywhere. ??
@alanfate4853
@alanfate4853 6 жыл бұрын
So that it is not valid even in addition. Am I wrong? I am learning this.
@nofkool
@nofkool 2 жыл бұрын
what is this software ? Great video btw
@hotcheebo
@hotcheebo 4 жыл бұрын
thank you for good lecture
@abubakarseyruu7175
@abubakarseyruu7175 6 жыл бұрын
very satisfied lessons
@learningacademy7534
@learningacademy7534 2 жыл бұрын
Very helpfull
@SuongThol
@SuongThol 3 жыл бұрын
good video thanks
@harineupane4533
@harineupane4533 6 жыл бұрын
Thank you from nepal
@instaminox
@instaminox 8 жыл бұрын
Great video thanks
@asafahmadshayaan3317
@asafahmadshayaan3317 7 жыл бұрын
if a polynomial of degree 2 and we multiply it by a negative number then the whole graph turns upside down .. How is that a vector space then?
@OswaldChisala
@OswaldChisala 7 жыл бұрын
Hi Asaf! Tl;DR: There is no Tl;DR. Here's my take on your question. Feel free to counter-check its validity. To state things differently, the statement u + v E V stipulates that the sum of u and v is, itself, a member of the group V, on which u and v are properly defined. That being said, the definition of the elements/mathematical objects that V described is left open-ended (abstract). So, yes, if you attempted to define a vector space V = [x y]' : {x > 0, y > 0} multiplying any element of the set by a negative, real-valued constant would, in-fact, collapse the definition of YOUR vector space (the one where we said every element needs to be real-valued and positive). However, if we replaced the condition {x > 0, x > 0} with {sgn(x*y)(x*y) > 0}, your vector space would hold. In the case of a vector space of second degree polynomials, our definition of the vector space, V, might be: V = (a+b*t+c*t^2), for {{a,b,c E R} E I}. Well, what happens if you multiply a+b*t+c*t^2 by -1? You get -a-b*t-c*t^2, which is also a second order polynomial. To see this better, let {A = -a, B = -b, C = -c} and you will see immediately that the general form of the polynomial, A+B*t+C*t^2, is retained. IF our definition said that the coefficients had certain restrictions, for example, a > 0, multiplying by -1 would cause our definition of the vector space of our second order polynomial to fail. So, you see, whether a given general mathematical object (a set of numbers, polynomials, functions, matrices, vectors, etc) can be considered a vector space is dependent on the very precise definition of V for which your object is described. As a closing remark, the term "vector space" can create a false impression of what a vector space is (I hated having to write that, sorry). Why the false impression? A vector space is essentially a parametrized mathematical structure. That viewpoint opens up our sense of vector spaces to consider some of the spaces I alluded to earlier (which are all, in some sense, parametrized), beyond the standard "2 and 3-D vectors" we see in, say, kinematics. This is my present understanding of vector spaces (thanks KZbin!), and I apologize for any misconceptions I may have generated. Best wishes with your study of abstract linear algebra! Yours, Oswald K. Chisala, II The Wishful Thinker :) Michigan State University -- (I'm definitely not a mathematician).
@bernardopankaarchegas8007
@bernardopankaarchegas8007 3 жыл бұрын
Amazing vid
@mbuaoscar3117
@mbuaoscar3117 5 жыл бұрын
Please I want a tutorial session
@aydaasyra7926
@aydaasyra7926 7 жыл бұрын
how to solve this question : let V be the set of real numbers of the form (u1 , 1) + (v1 , 1) = (u1 + v1 , 1) and k (u1 , 1) = ( k^2 u , 1). i) is k (u + v) = ku + vu for any u and v in V and any real number k?
@rameshmahato389
@rameshmahato389 5 жыл бұрын
Its helps me too
@allipraveenkumar1107
@allipraveenkumar1107 4 жыл бұрын
Is the question accurate??😳
@mountaintiger263
@mountaintiger263 6 жыл бұрын
Very helpful
@phee5192
@phee5192 7 жыл бұрын
thank you man
@cmp95
@cmp95 3 жыл бұрын
good
@janecheng9698
@janecheng9698 3 жыл бұрын
I was focusing on the content of your video until at almost the end of it, i realized that you got a hooooot voice😆
@janecheng9698
@janecheng9698 3 жыл бұрын
ohhh great explanations too of course
@azultarmizi
@azultarmizi 6 жыл бұрын
could be better if you have a pointer on which part of the slide you're talking
@ryantr9832
@ryantr9832 6 жыл бұрын
this is awesome
@rashidminhas6372
@rashidminhas6372 7 жыл бұрын
helpull . thanks
@honestdudeguru
@honestdudeguru 3 жыл бұрын
How do I chat with you one on one?
@taeh6752
@taeh6752 6 жыл бұрын
Thanks
@edmondmalepane3141
@edmondmalepane3141 5 жыл бұрын
I still don't get it … this is difficult for me
@sheralikhtk5200
@sheralikhtk5200 4 жыл бұрын
same as me bro.. i skipped vectors chapter in high school and now i regret it :(
@AfrikaiMalac2
@AfrikaiMalac2 7 ай бұрын
I hate having to study this as a business administration major. If I wanted a manager in my company I wouldn't care about his algebra knowledge
@shrouqmakki8138
@shrouqmakki8138 4 жыл бұрын
should we draw?
@alex-dn9to
@alex-dn9to 4 жыл бұрын
helll yeah dub.. thx Big Chrev
@sSSspidermanNNn
@sSSspidermanNNn 6 жыл бұрын
If two or three axioms are good enough to proof things, why we need to have ten?
@webedblood3994
@webedblood3994 6 жыл бұрын
because all ten axioms must be true in order to have a vector space that makes sense
@aku7598
@aku7598 9 ай бұрын
If bn =-an?
@secretnobody6460
@secretnobody6460 Жыл бұрын
-3 and -1 are greater than 0?????????????????
@nathanholbrook1693
@nathanholbrook1693 5 жыл бұрын
"If you've never looked at a polynomial before.".... c'mon dude. Know your audience.
@rumanaislam4758
@rumanaislam4758 Жыл бұрын
That's hilarious 😂
@Saifullah-oe3gu
@Saifullah-oe3gu 6 жыл бұрын
(Y)
@asdfhjkl5086
@asdfhjkl5086 3 жыл бұрын
Add the Arabic translation please to understand the details more
@Laeils
@Laeils 2 жыл бұрын
I don't get it
@anirudhsanthosh2532
@anirudhsanthosh2532 4 жыл бұрын
You sound like John krasinski!
@omerfeyyazselcuk7325
@omerfeyyazselcuk7325 2 жыл бұрын
huh, i thought all exponents in a polynomial needed to be integers.
@erikkirakosyan5838
@erikkirakosyan5838 2 жыл бұрын
I thought degree of zero polynomial was undefined
@gunaymirzeli5436
@gunaymirzeli5436 3 жыл бұрын
I don’t understand nothing ☹️
@AymanElKazzaz
@AymanElKazzaz 2 жыл бұрын
kes emmak shu bet sa3eb el 2eshya
@woodenstick3517
@woodenstick3517 2 жыл бұрын
I can't understand this math .
@muhammadsaad3421
@muhammadsaad3421 Жыл бұрын
who tell u to teach? you confuse me more than chat gpt
@Casual314aA
@Casual314aA 4 жыл бұрын
This is a great explanation. Thanks.
@dineoramokhothoane6388
@dineoramokhothoane6388 7 жыл бұрын
Great video thanks alot
@TheDillon8825
@TheDillon8825 4 жыл бұрын
Thanks
@cmp95
@cmp95 3 жыл бұрын
good
@cmp95
@cmp95 3 жыл бұрын
good
[Linear Algebra] Vector Space Linear Mapping Proof Examples
5:04
Vector Space
18:04
Prime Newtons
Рет қаралды 94 М.
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 40 МЛН
SUBSPACES - LINEAR ALGEBRA
13:04
TrevTutor
Рет қаралды 249 М.
Linear Algebra 4.1.1 Vector Spaces
18:55
Kimberly Brehm
Рет қаралды 213 М.
[Linear Algebra] Linear Independence
16:05
TrevTutor
Рет қаралды 75 М.
The deeper meaning of matrix transpose
25:41
Mathemaniac
Рет қаралды 393 М.
The Best Way To Learn Linear Algebra
10:32
The Math Sorcerer
Рет қаралды 80 М.
Linear subspaces | Vectors and spaces | Linear Algebra | Khan Academy
23:29
A Swift Introduction to Geometric Algebra
44:23
sudgylacmoe
Рет қаралды 893 М.
Spanning Sets in Vector Spaces | Linear Algebra
15:10
Wrath of Math
Рет қаралды 4,2 М.
Abstract vector spaces | Chapter 16, Essence of linear algebra
16:46
3Blue1Brown
Рет қаралды 1,4 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 40 МЛН