2:46 two way table of factor variables 3:23 Data Partition 5:21 logistic regression Model,8:36 prediction 10:05 probability calculation 17:32 error test data 14:24 Interpretation of coefficinet,18:28 goodness of fit 15:03 error training data 16:04 confusion matrix
@bkrai4 жыл бұрын
Thanks!
@Lilian.Chidinma.Nwafor3 ай бұрын
Dr., I don't know how to tell God to bless you for me. your MLR video saved me during my research presentation, see my explaining like a pro!! all thanks to you. This also is very helpful, especially how you gave detailed explanations.
@bkrai3 ай бұрын
Glad it was helpful!
@diliniherath12994 жыл бұрын
No words to express my gratitude for you. Found your channel days before submitting the project and you saved me !
@bkrai4 жыл бұрын
Great to hear!
@wardhereadan11875 жыл бұрын
DR. Bharatendra Rai that video was amazing!! I hope you continue to post more videos like this! seriously amazing!!!!!!!!!!!!!!!
@bkrai5 жыл бұрын
Thanks for comments!
@crossray9743 жыл бұрын
Thank you Mr. Dr. Bharatendra - your stuff and method are on top of youtube, greets from Europe!
@bkrai3 жыл бұрын
Most welcome!
@youroldmangaming81504 жыл бұрын
Thanks mate. Been struggling to find a practical person to show how to do this. Very clear and well thought out. Thank you.
@bkrai4 жыл бұрын
You're very welcome!
@shaikhalishams40654 жыл бұрын
Finally I've got a perfect video on this topic.
@bkrai4 жыл бұрын
Thanks for comments!
@kir668460373 жыл бұрын
the best teaching of logistic regression!!!! Thanks a lot
@bkrai3 жыл бұрын
Most welcome!
@mnorberta244 жыл бұрын
Thank you for helping save my grades for this module!!!!! I might just watch all your videos because they're so helpful!!!!
@bkrai4 жыл бұрын
Glad to hear it!
@saipri3 жыл бұрын
Extremely crisp and accurate! Hope you get many more views! By far the best on this topic...
@bkrai3 жыл бұрын
Thanks for the comments!
@philippdegens67764 жыл бұрын
Thanks. You gave a clear and concise explanation and a bonus was that it was in R which I am learning.
@bkrai4 жыл бұрын
You're very welcome!
@bkrai4 жыл бұрын
You may also find this useful: kzbin.info/aero/PL34t5iLfZddvv-L5iFFpd_P1jy_7ElWMG
@allabtlyf5 жыл бұрын
Wonderful video.. I was struggling to calculate the probablity from estimate in notebook but you made it quite simple. Thanks a lot
@bkrai5 жыл бұрын
Thanks for comments!
@jbei99814 жыл бұрын
Thank you so much. Excellent video. I was really thinking I would fail my assignment until I found this.
@bkrai4 жыл бұрын
You're very welcome!
@viigeminalegio4 жыл бұрын
Thanks you very much Dr. Bharatendra. I was looking to solve some of my doubts and I finally solved them. Thanks for sharing your knowledge. I wish I could have the opportunity to help you in some occasion. Thanks for all, great job.
@bkrai4 жыл бұрын
Thanks for your comments and feedback!
@pranatim3 жыл бұрын
Best tutorial on logistic regression. Thank you so much for sharing.
@bkrai3 жыл бұрын
You're very welcome!
@soumikchatterjee39964 жыл бұрын
Excellent video. Just few things to mention. In glm result, residual deviance is greater than residual degree of freedom that means the data has overdispersion. Better to use quasibinomial function rather than binomial. Other wise p value would show false significance level. Second thing to mention backward variable selection without montecarlo permutation has type2 error therefore better to use it cautiously or use Information theoretic approach proposed by Burnham etal with model weight as a criterion. Thanks for this beautiful video sir
@soumikchatterjee39964 жыл бұрын
Although you created seed and resample which can reduce the error but it is extremely difficult to find proper seed size without understanding model weight (wi). Thanks
@bkrai4 жыл бұрын
Thanks for the feedback and comments!
@laxmanbisht26382 жыл бұрын
Sir, thanks a lot!
@bkrai2 жыл бұрын
Most welcome!
@flamboyantperson59366 жыл бұрын
Excellent video Sir. You are a great statistician and expert in R. Thank you for the video Sir
@bkrai6 жыл бұрын
Thanks!
@jared11224 жыл бұрын
Thank you Dr Rai for the wonderful explanation👍 God bless you 🙏
@bkrai4 жыл бұрын
Welcome!
@PA_hunter3 жыл бұрын
Thank you Dr. Bharatendra Rai. Can you explain more why Rank 1 is not included in the model, please?
@bkrai3 жыл бұрын
For factor independent variables, we covert them to dummy variables. For more detailed coverage see: kzbin.info/www/bejne/qWOWdIB_n8uqfs0
@williamstan17802 жыл бұрын
Very informative video and explain it in a manner that easy to understand I have a question though , what is the difference between logistic regression and multinomial logistic regression ?
@bkrai2 жыл бұрын
response variable has more than 2 levels in multinomial. See this for details: kzbin.info/www/bejne/nKXNf6iGoLWEeJY
@nth.education4 жыл бұрын
Amazing explanation, loved the way you went through with the code and how to proceed step by step. I have a doubt with the pvalue calculation at the end. Can you explain a bit more the "with" command you used ? i couldn't understand the parameters used in that, interpretation of p-value is fine, but would like to know the use of the command so i can employ that in some places as well. Thanks
@bkrai4 жыл бұрын
you can run ?with in the console, it will give you all details and also examples.
@narasimhapuvalla32116 жыл бұрын
1.) Suppose we have categorical fields in our data. Is it mandatory to always change to numeric factors ? 2.) If the answer for question 1 is correct, then what if we have too many unique values in each category columns? Let us take for example : I have a dataset of 100,000 records. There are a few columns with categorical data in it. Each of these categorical columns may have 1000 or more unique values. So if I convert them into factors, then "labels = c(1:1000 or more)". Is this ok to do it this way? 3.) Is there a way to not convert categorical data into numeric values and still use them in the machine learning model? 4.) How do we deal with Date fields? 5.) The conversion of categorical variables into dummy variables --> should we do this in all cases or is this something we need to consider only if the unique values in the categorical fields are limited to a lesser number?
@dhavalpatel18434 жыл бұрын
1. No , it is not mandotary to change. You can set family parameter as “binomial”. 2.Answered in no.1 3.Answered in no.1 4.Convert it into factor variables 5.Try to consider it in all cases.
@dipeshpatel31063 жыл бұрын
Sir plz make on Monte Carlo simulation R
@bkrai3 жыл бұрын
Thanks for suggestion!
@rajeshtukdeo4 жыл бұрын
Amazing video to understand the logistic regression concepts thoroughly !!!
@bkrai4 жыл бұрын
Thanks for comments!
@rohitkamble17373 жыл бұрын
Very clear explanation. Understand all things
@bkrai3 жыл бұрын
Thanks for comments!
@rohitkamble17373 жыл бұрын
@@bkrai sir, I am working on project on Real estate and banking model to predict prizes of house, could you plz help me on that?
@dmukherjee40496 жыл бұрын
Sir can you explain "goodness of fit test". What is df.null-df.residual, lower tail & why it is 'F'? Thank You
@bkrai6 жыл бұрын
When in RStudio, you can run ?glm. This will provide you with more details.
@genevieveemefaasare83522 жыл бұрын
thanks so much. very precise and concise explanations. Thank you Sir.
@bkrai2 жыл бұрын
You are very welcome!
@mohamedbousarout65153 жыл бұрын
Thank you sir keep up the good work ;)
@bkrai3 жыл бұрын
You are welcome!
@yogeshdhar58254 жыл бұрын
Very well explained!
@bkrai4 жыл бұрын
Thanks for comments!
@harishnagpal216 жыл бұрын
Hi Bharatendra, I saw your linear regression video also. The explanation on results was fantastic. I got to learn new things. One query - when to use linear and when to use logistic regression? Thanks
@bkrai6 жыл бұрын
When y variable is factor, logistic is used. For numeric y linear regression is used.
@harishnagpal216 жыл бұрын
thanks :)
@jarrelldunson4 жыл бұрын
Thank you for sharing, very helpful
@bkrai4 жыл бұрын
You are so welcome!
@lindanidube57144 жыл бұрын
This was amazing... you explain everything step by step nicely :-)
@bkrai4 жыл бұрын
Thanks for your feedback!
@femiakinmade40774 жыл бұрын
I enjoyed your video, thank you! Can I get some clarity on why you used the "train" dataset in your prediction instead of "test"? dataset: ## p1
@bkrai4 жыл бұрын
After 'train', I also use 'test'. Note that if you get good results with 'train' but not with 'test', it will suggest over-fitting problem.
@femiakinmade40774 жыл бұрын
@@bkrai Thanks for your response. Appreciated
@bkrai4 жыл бұрын
Welcome!
@fernandoflores31613 жыл бұрын
Excellent explanation! How do you deal with ordinal and nominal categorical variables?
@bkrai3 жыл бұрын
If response variable is ordinal, refer to this: kzbin.info/www/bejne/p5zMp32wn957paM
@kavyayd35775 жыл бұрын
Great explaination, sir, can you upload a video of logistic regression with more than 10 varaibles. it would be great help.
@bkrai5 жыл бұрын
The process will work same with any number of variables.
@anuchowdarybds5 жыл бұрын
Very clear explanation . Thank you . Do you have any more videos on logit regression ?
@bkrai5 жыл бұрын
Thanks for comments! The link below also has multinomial logistic regression and other regression based methods. kzbin.info/aero/PL34t5iLfZddtKNwFNic3HWNV2qMsQ9AjD
@ezechielamoussou74092 жыл бұрын
Thank you for the video Sir. If I were running a logistic regression with categorical predictor variables, should I change them to factors?
@bkrai2 жыл бұрын
Yes.
@alphar854 жыл бұрын
You are just amazing 👏. You made my life easier with the codes.
@bkrai4 жыл бұрын
Happy to hear that!
@AnaPTedim7 жыл бұрын
Great video it really helped a lot. I have a question though can I use the same model if one of my categorical variables has in the two-way table that equal zero? If not is there any alternative? How can I solve this?
@bkrai7 жыл бұрын
Let's say your categorical variable has 10 levels and the last one has frequency below 5. You can combine last two levels into one and then do the analysis.
@AnaPTedim7 жыл бұрын
Thank you very much! That might work :)
@victorhenostroza18715 жыл бұрын
Thanks man, again other amazing job, u r the teacher we all want at univ.
@bkrai5 жыл бұрын
Thanks for comments!
@Debashish_Chatterjee5 жыл бұрын
I love your videos .... concise and to the point. Superb .... keep it up
@bkrai5 жыл бұрын
Thanks for comments!
@shyamchaurasiya10695 жыл бұрын
Love You Sir Very Useful videos
@bkrai5 жыл бұрын
Thanks for comments! For recent Python video, see this link: kzbin.info/www/bejne/o3zFZpuIf9Knebc
@hanadmohamud18813 жыл бұрын
Thank sir
@bkrai3 жыл бұрын
You are welcome!
@yousif_alyousifi2 жыл бұрын
Hi, Dear Dr.Bharatendra Rai What are the best models for fitting the binary data? I know that the logistic regression model is one of the models. What is the other model to make a comparison with the logistic model to find the best model? I would be grateful if you could assist me with this. I look forward to hearing from you soon Best regards,
@bkrai2 жыл бұрын
You can use tree based methods for comparison, especially random forest and extreme gradient boosting. See this link for details: kzbin.info/www/bejne/nnSvfICfj6eHqLc
@yousif_alyousifi2 жыл бұрын
@@bkrai Thank you, Prof. Are these methods (tree-based methods) can be used for regression or classification? Since my concern is to do regression ( predict disease status). As I think that these methods are used only for classification. Kindly confirm. Best regards
@bkrai2 жыл бұрын
It does both regression or classification. I have included examples for both regression and classification.
@yousif_alyousifi2 жыл бұрын
@@bkrai Thank you, Prof.
@guruji8852 жыл бұрын
Sir Outstanding 👍✍️
@bkrai2 жыл бұрын
Thanks!
@sagaranvekar8565 жыл бұрын
Great Explanation.Thank you Sir!
@bkrai5 жыл бұрын
Thanks for comments!
@abdulazeez98636 жыл бұрын
Excellent explanation... please make a video of Boosted Regression Tree model with R. Thank you sir.
@bkrai6 жыл бұрын
Thanks for comments and suggestion! I've added it to my list.
@reubenmarfo98553 жыл бұрын
Professor, can you please comment on why in your previous video on logistic regression, you trained the model and predicted on the same data without splitting.
@bkrai3 жыл бұрын
Just wanted to show mainly how to run logistic regression. But after getting feedback created this on which is more complete.
@valeriasanchez49104 жыл бұрын
Excellent video Dr.!, I just have one question: Why it is necessary to do the data partition for the estimation?
@bkrai4 жыл бұрын
It can help to avoid over fitting which happens when results are good with training data, but not so good on test data.
@mueezwaq Жыл бұрын
Hi there, thanks for this. I don't like how R displays the results for factors with more than 2 level - is there any way to get output like SPSS (which supplies a single odds ratio, 95% CI and p-value for each variable in the model). I have tried both the logistic.display and exp() commands but they do not provide an overall value like this. Any ideas?
@bkrai Жыл бұрын
You can use the output and customize it.
@maheswarivemula1413 жыл бұрын
Thank you sir for the wonderful video. Sir, I have a doubt that I'm not getting value while running on the test dataset. Could you please help me out of this error. It is showing ' all arguments must have same length '
@bkrai3 жыл бұрын
Check your data again.
@InfinitesimallyInfinite5 жыл бұрын
Brilliant video professor. I have question... so it is always that you convert categorical integer variables into factor variables before performing logistic regression? At the other places, like the algorithm XGB, I haven't seen you convert 'Admit' variable into a factor variable, why is it so? Thanks.
@bkrai5 жыл бұрын
Different methods require data to be prepared in certain way. For example, XGB and neural networks require response to have numeric format.
@InfinitesimallyInfinite5 жыл бұрын
Thanks professor for the quick response. Really appreciate. 😀
@bkrai5 жыл бұрын
Thanks!
@Drgautham2 ай бұрын
Thank you so much Professor🙏🙏
@bkrai2 ай бұрын
You are very welcome!
@rizwanghulamhussain73093 жыл бұрын
Excellent Video! Could you please guide how to fit panel logistic regression in R. I want to make confusion matrix / ROC curve using pglm library but could not find fitting probabilities in pglm library
@dipanjanroy5894 жыл бұрын
sir can you please provide the code for testing accuracy of this example. I'm a new learner & i find it pretty interesting & simple by the way you teach.
@bkrai4 жыл бұрын
It's in the description.
@JamTik7344 жыл бұрын
Perfect Sir
@bkrai4 жыл бұрын
Thanks!
@rohinipatil29294 жыл бұрын
Very well explained
@bkrai4 жыл бұрын
Glad it was helpful!
@kartt1005 жыл бұрын
Excellent explanation sr
@bkrai5 жыл бұрын
Thanks!
@ramp20117 жыл бұрын
Great video. rank is a factor variable and looks like logistic regression has auto converted that in to dummy variables internally (from the summary model). Is there a way to find which algorithms auto converts categorical variable to dummy variables automatically and the ones one has to convert manually? Thank you for your help
@bkrai7 жыл бұрын
Many algorithms do not need conversion of categorical variables to dummy variables. However, when using regression-based methods, R does so automatically.
@MemphianSounds4 жыл бұрын
Great as always! What do you do when you have so many rows and variables that your computer can't compute the vector in R?
@bkrai4 жыл бұрын
You can take a sample.
@rithishvikram17594 жыл бұрын
wow wow wow wow wow wow wow wow thank you so much sir
@bkrai4 жыл бұрын
Thanks for comments!
@adtx114 жыл бұрын
One quick question: model 1 : a is the output variable, b and c are covariates, and both have significant p value. Model 2 : same output variable, b and d are covariates, and both have significant p values after we run the summary command. Finally Model 3: same output variable and all three b, c, d are covariates. Here if we see that only b and c are significant, but d doesn't have a significant p value , - then how do you interpret the result ? Can we say that adding covariate d doesn't add value to the model , even though it was significant in the previous bivariate scenario? Thank you.
@bkrai4 жыл бұрын
Check relationship between c and d, that may help clarify.
@SachinSingh-wr5yv6 жыл бұрын
sir, please make a video on K- Fold cross validation.
@bkrai6 жыл бұрын
Thanks for the suggestion, I've added it to my list.
@evansumido61912 жыл бұрын
hi sir. do you have a code for cross validation? thank you.
@bkrai2 жыл бұрын
refer to this for various ways to use CV: kzbin.info/www/bejne/fZ7Oeal6qJV6fZo
@priyadarsinisamal17793 жыл бұрын
sir how can i use one data set for training and another different dataset(having similar variables like training set) for testing?
@shajibkumarguha2344 жыл бұрын
Hello Sir! Why did you choose rank as factor and not as ordered?
@bkrai4 жыл бұрын
You are right, ordinal will be more correct.
@akashprabhakar63534 жыл бұрын
Thanks for this video sir... Kindly tell how can we increase the accuracy of this model...as error rate is quite high..
@bkrai4 жыл бұрын
You can try other methods to improve accuracy: kzbin.info/aero/PL34t5iLfZddsQ0NzMFszGduj3jE8UFm4O
@mujeebrahman52825 жыл бұрын
Absolutely brilliant thank you
@bkrai5 жыл бұрын
Thanks for comments!
@mujeebrahman52825 жыл бұрын
Dr. Bharatendra Rai could you please make videos on Machine learning using python
@bkrai5 жыл бұрын
Thanks for the suggestion, I'll work on this.
@zelennefontainerivero50914 жыл бұрын
Thanks a lot for the video, it helped me a lot. Would be great if you could plot these results from your video or at least write me please how would you do it.
@bkrai4 жыл бұрын
Let me know what exactly you are looking to plot. Here results are simply summarized in the form of a confusion matrix.
@YatiChoudhary4 жыл бұрын
Sir, do we change intergers into factors if the variables are categorical even in Multinomial Logistic Regression or it is done only in Logistic Regression?
@bkrai4 жыл бұрын
For Multinomial Logistic Regression you can refer to this: kzbin.info/www/bejne/iWPVi6NqgcShjtE
@YatiChoudhary4 жыл бұрын
@@bkrai Sir actually I came to this video after watching your video on Multinomial Logistic Regression. But now I am confused if we should always change all categorical variables into factors or it just happens in logistic regression. Because in Multinomial Regression you changed only response variable into a factor.
@bkrai4 жыл бұрын
For response variable I would say yes. But for others you can go case by case.
@YatiChoudhary4 жыл бұрын
@@bkrai Thank you Sir
@bkrai4 жыл бұрын
You are welcome!
@amritthapa93156 жыл бұрын
Could you please explain the importance of "xtabs" command in logistic regression? You said we should not get zero. Could you explain more on this.
@bkrai6 жыл бұрын
Key idea is to have sufficient number of samples in each cell. If there are too few or zero samples, then the prediction model may not be stable or consistent.
@JidduVillarin5 жыл бұрын
@@bkrai Thank you for this video. It is very concise and understandable. I'd like expand on this question slightly. If you did have a zero value in the xtab, what would have been the appropriate course of action?
@yaweli2968 Жыл бұрын
If you have two or more categorical variables which are strings, how do you decide which one to make a factor of 0 or 1. Like how do you assign them specific factors ?
@sk933596 жыл бұрын
Hi Sir, i like your video and very useful for learning thanks for making video, i have a question can you make a video on credit card data set i want to analyze customer who will better spend on category like online, dinning ,etc, can you predict dinning spend , thanks i hope you will post video soon i am waiting your video
@bkrai6 жыл бұрын
Thanks for the suggestion! Send me a link to this dataset.
@sk933596 жыл бұрын
@@bkrai data.world/ash018/credit-card-transaction. This is data set I want to analysis customer who will spend more on dining
@BBkhadka Жыл бұрын
thank you for great lecture
@bkrai Жыл бұрын
Most welcome!
@uhsay19866 жыл бұрын
Hi Sir , i have a retail train data set where i need to predict if a store should be opened or not in a respective location. I removed NAs from the train set , trying to apply glm function ( store~. , data=train, family='binomial' ) .. even after waiting 5-10 min i dont get any output .. the data set consist of character , int columns.
@bkrai4 жыл бұрын
You will have to look at the structure of your data and make sure response variable is of factor type.
@rohankulkarni86135 жыл бұрын
Please let me know if we have data visualization on this data ? like in tableau or any other software ?
@bkrai5 жыл бұрын
For data visualization, you can try this link: kzbin.info/www/bejne/pJqlZnRupsZrbqs
@sayamnandy58556 жыл бұрын
I have a question sir..Should i check multicollinearity (Vif) while performing the logistic regression? If any of the variable's vif value is greater than 2 then i will remove this variable from my model. Can i do that?
@bkrai4 жыл бұрын
Yes, you should be able to do it.
@shivamparashar...9536 Жыл бұрын
Sir when I uploaded a data set then it doesn't take all data ..it is leaving a few rows. Please tell me how I can upload a dataset. Thank you
@bkrai11 ай бұрын
How many rows your original data has?
@s94386795255 жыл бұрын
Hi sir, Please explain the use of type='response' in line number 23 Thanks
@bkrai4 жыл бұрын
The type="response" option tells R to output probabilities of the form P(Y = 1|X), as opposed to other information such as the logit.
@valeriasanchez49104 жыл бұрын
Thank you!
@bkrai4 жыл бұрын
You are welcome!
@yekhtiari6 жыл бұрын
Loved all of your videos.I've learned lots of good tricks in R with your videos.Could you tell what I did wrong the following code returns the same index?(I am thinking this way is not safe for splitting dataset into training and testing) x
@bkrai6 жыл бұрын
You have a very small sample. Try sample(2,length(x),replace = T,prob = c(.5,.5))
@yekhtiari6 жыл бұрын
@@bkrai How about using : idx
@irfaneditzstatus97604 жыл бұрын
Hi Sir, I am analyzing the data based on the traffic survey. I have Age, Gender, TripDist, TravelMode, TravelTime, DepartureTime, LectureTime information. What is the meaning of factor and margin in regression Modelling. can you help me in that. Thanks in advance
@bkrai4 жыл бұрын
'factor' is another name for a categorical or qualitative variable.
@muralitharanrap45344 жыл бұрын
Can u plz explain . what would xtab does ?
@bkrai4 жыл бұрын
It is for cross tabulation or for making a 2-way table shown in the example.
@myakaramyakrishna44004 жыл бұрын
Why do you use xtabs ? How we do find a dependent variable in data set?
@bkrai4 жыл бұрын
xtabs is for cross tabulation. A dependent variable is based on the context of data. In the example I have used, it is obvious.
@merumomo6 жыл бұрын
Great video! What do we do if we do have "0"(zero) in factor variables?
@bkrai6 жыл бұрын
Do you mean missing values?
@merumomo6 жыл бұрын
Bharatendra Rai yes, I meant missing values. We fill in missing values with mean/median in numeric variables but I guess we need to remove missing values if it is in categorical variables?
@bkrai6 жыл бұрын
For categorical variables you can go with category with highest frequency.
@merumomo6 жыл бұрын
Bharatendra Rai thank you!!
@lutfyabdulah13214 жыл бұрын
Thanks for your share. It is very helpfull
@bkrai4 жыл бұрын
You are welcome!
@chandrasekharkona64624 жыл бұрын
excellent work
@bkrai4 жыл бұрын
Thanks for comments!
@kumarvarma9426 жыл бұрын
HI Sir Great video's and easy to learn topics. I have small doubt don't mind. before dividing data into train and test . we need to do null values removable , finding outliers, scaling, EDA, then sampling .... could you please please share if any video on linear regression or logistic with combination of these steps. because we need to check all above conditions to predict best output . I am bit confusion on finding outliers(or remove outliers) and null values removable and scaling (min max or z-score) . Please please share any video it will helpful to us. Thanks in advance .
@me3jab15 жыл бұрын
Hello , Before u remove gre residual deviance was 369.99 when u rerun the model without gre it became 371.81 I mean increased , PLease in this case we should not keep gre even its not significant ? or the value change is negligible
@bkrai5 жыл бұрын
That change is negligible. When a variable is not statistically significant, we should remove it.
@me3jab15 жыл бұрын
@@bkrai thank you Boss
@bkrai5 жыл бұрын
welcome!
@me3jab15 жыл бұрын
@@bkrai if we have only one Y result ( not 2 as this example ) which Family type we must choose ?
@bkrai5 жыл бұрын
If Y has only one value then that doesn't need a classification model.
@arunshowri78296 жыл бұрын
Hi Sir, I have a question. how to predict the target variable if we have many independent variables( eg: around 60). what we have to do if most of the values in independent variable are NA's. Please suggest me Sir.
@bkrai6 жыл бұрын
60 independent variables should be fine. But before applying the method, you need to take care of missing values to prepare your data ready for analysis.
@sayamnandy58556 жыл бұрын
Apart from sir's suggestion..you can go for information value concept if you have plenty independent variable.
@navneetjain25074 жыл бұрын
What about the case when we have a lot of independent variables that have zero as a response or missing values?
@bkrai4 жыл бұрын
For missing values refer to this link: kzbin.info/www/bejne/d5-an4OCf5WZqck
@hyunjungariuka16864 жыл бұрын
can anyone help? I got about NSP, but in the regression in appears only 2 rows which is suspect and pathological, but in my regression there is 4 lines like that. I think that it is suspect pathological and the other 2 what can it be?
@bkrai4 жыл бұрын
For response more than 2 levels, you need to apply multinomial logistic. Here is the link: kzbin.info/aero/PL34t5iLfZddvv-L5iFFpd_P1jy_7ElWMG
@divyasree32614 жыл бұрын
Sir i need robust regression using r..can u please post the next video for robust regression
@bkrai4 жыл бұрын
Thanks for the suggestion, I've added it to my list.
@ayush6126 жыл бұрын
This is an awesome video Sir...thanks for uploading this!!
@bkrai6 жыл бұрын
Thanks for comments!
@vairachilai35884 жыл бұрын
In Logistic regression, how to check the linear relationship between the logit of outcome and each predictor values
@bkrai4 жыл бұрын
That's not needed.
@vairachilai35884 жыл бұрын
@@bkrai Linear relationship between the logit of outcome and each predictor values. If this condition is not met, logistic regression is invalid log〖𝑝/(1−𝑝)〗=𝑏0+𝑏1 ∗𝑋 I read in almost many article. If possible can you explain for this case study
@dhanielaritonang32734 жыл бұрын
Sir I have a question, how if we have three levels of categorical response variable.. what 'family' should I use ?
@bkrai4 жыл бұрын
For 3 or more, use multinomial logistic regression: kzbin.info/aero/PL34t5iLfZddvv-L5iFFpd_P1jy_7ElWMG
@OrcaChess6 жыл бұрын
Thank you very much! Your videos create high value. Kind regards from Karlsruhe Jonathan
@bkrai6 жыл бұрын
Thanks for your comments!
@marcorinaldo41396 жыл бұрын
Hi Bharatendra, could you please share the R code and data? Thanks a lot!!
@bkrai6 жыл бұрын
They are available in the description area below the video. Here are the links: Data: goo.gl/VEBvwa R File: goo.gl/PdRktk
@marcorinaldo41396 жыл бұрын
Thanks a lot! i have overlooked them! thanks
@flamboyantperson59366 жыл бұрын
Sir I have one more request if you don't mind can you please make a video on K Nearest Neighbor KNN? Thank you so much Sir.
@bkrai6 жыл бұрын
Thanks for the suggestion! I've added this to my list.