what a nice integral!

  Рет қаралды 5,594

Michael Penn

Michael Penn

Күн бұрын

Пікірлер: 31
@goodplacetostop2973
@goodplacetostop2973 11 сағат бұрын
0:04 Bless you 0:07 Actual start
@mtaur4113
@mtaur4113 10 сағат бұрын
4 seconds of hard work, not gonna throw that away, we have come too far.
@Cloud88Skywalker
@Cloud88Skywalker 8 сағат бұрын
Help, please. I couldn't find a good place to stop and now I'm lost.
@jay_13875
@jay_13875 9 сағат бұрын
If we introduce I(b) = int_{-infty}^0 e^y/y * sin(b*y) dy, we get dI(b)/db = int_{-infty}^0 e^y * cos(b*y) dy, which is known to be 1/(1+b^2). (basically the Laplace transform of cos(b*t) evaluated at s=1 after substituting t=-y) Therefore I(b) = arctan(b) + C. And since I(0) = 0, we have C = 0, giving us I(1) = arctan(1) = pi/4.
@rotoboravtov4354
@rotoboravtov4354 9 сағат бұрын
4:15 After getting the dz integral we can use exponential formula for sin and immideately get the last integral using the fact \int_0^inf e^(az)=1/a
@dalek1099
@dalek1099 3 сағат бұрын
I did it by writing sin(alnx)/lnx with feynman's trick the derivative becomes cos(alnx)=Re(e^(ialnx))=Re(x^(ia)). Then integrate, to get Re(1/(1+ia))=Re((1-ia)/(a^2+1)=1/(a^2+1). Integrate to give arctana+C. Setting a=0 gives the integral=0 because sin0=0. Therefore, we get arctana and setting a=1 we get arctan1=pi/4.
@maurobraunstein9497
@maurobraunstein9497 Сағат бұрын
Clever! I did this integral less cleverly but I still got the answer, which doesn't usually happen with these integral videos. I also did the substitution, which gives the integral of sin(y)e^(y)/y dy from -∞ to 0, but then I got a bit stuck (because I never think of differentiating under the integral sign) so I just... turned sin(y)/y into an infinite series, the sum from n = 0 to ∞ of (-1)^n · y^(2n)/(2n + 1)!. Then it's just integration by parts. If f(n) = ∫y^(n)·e^y dy from -∞ to 0, you can easily see that f(0) = 1, and by applying integration by parts, you get that f(n) = -n·f(n - 1), so f(n) = (-1)^n · n!. This eventually gets you to the integral as 1 - 1/3 + 1/5 - 1/7 + ..., which is a series that converges to π/4 *famously* slowly. I feel like I got lucky that I remembered that series. Not sure I would have been able to get π/4 from that otherwise.
@SuperSilver316
@SuperSilver316 11 сағат бұрын
Feynman’s trick or something
@TheEternalVortex42
@TheEternalVortex42 9 сағат бұрын
Feynman's trick is pretty much the same thing as what Michael did.
@AndyBaiduc-iloveu
@AndyBaiduc-iloveu 10 сағат бұрын
Feymanns trick or contour integration seems good
@karlyohe6379
@karlyohe6379 2 сағат бұрын
Okay. That was like a f*cking magic trick :D
@barryzeeberg3672
@barryzeeberg3672 3 сағат бұрын
Need a good place to start :)
@demenion3521
@demenion3521 10 сағат бұрын
i think writing sin(y) in exponential form gives the same result a bit quicker.
@BikeArea
@BikeArea 8 сағат бұрын
0:04 You should do more backflips again to relax your muscles. 😮 😏
@mr.soundguy968
@mr.soundguy968 3 сағат бұрын
And that's a good place to stop
@holyshit922
@holyshit922 9 сағат бұрын
t = -ln(x) L(f(t)/t) where f(t) = sin(t) then plug in s = 1
@sqigger
@sqigger 10 сағат бұрын
Another way to do it: sin(log(x)) = (x^i - x^(-i))/2i I(p) = int from 0 to 1 (x^(p*i) - x^(-i))/log(x) dx And there you go.
@solcarzemog5232
@solcarzemog5232 10 сағат бұрын
Why this? Can you elaborate?
@rotoboravtov4354
@rotoboravtov4354 9 сағат бұрын
@@solcarzemog5232 sin(x) = (e^(ix) - e^(-ix))/(2i). This is a bit loose but correct application of complex analysis.
@sqigger
@sqigger 4 сағат бұрын
@@rotoboravtov4354 yea, my bad 😅
@tm8539
@tm8539 5 сағат бұрын
I don't understand, it's a beautiful feeling, I wanna understand so much!
@robblerouser5657
@robblerouser5657 10 сағат бұрын
What did you do in the third step when you introduced "z" into the integral?
@gghelis
@gghelis 8 сағат бұрын
B-b-but where's the good place to stop?
@phatguardian
@phatguardian 8 сағат бұрын
Why didn’t he just restart filming 😂
@mtaur4113
@mtaur4113 10 сағат бұрын
Looks like sin(u)e^u/u du to me. That u denominator looks rough though. Maybe there is a definite-integrals-only trick too. 🤔
@stevenpurtee5062
@stevenpurtee5062 26 минут бұрын
Why do you always skip over the details of if/how to change the order of integration. That's an interesting and important step. You have at least said "by Fubini's Theorem" before, but it think it would be important and interesting to go through the steps.
@EliavShalev
@EliavShalev 10 сағат бұрын
Lol you way overcomplicated it. Could have easily solved it using the properties of the laplace transform.
@AndyBaiduc-iloveu
@AndyBaiduc-iloveu 10 сағат бұрын
Can you teach me how to do that? I only have learned a little about it when we use it to solve differential equations
@EliavShalev
@EliavShalev 8 сағат бұрын
@ sure! First you do the substitution that he did and convert the integral to that of -(sin(x)/x)e^(-x) from 0 to inf this is the laplace transform of sinx/x and from the properties of the laplace transform we know that L(f(t)/t) = L(f(t)) integrated from s to inf thus the result is the integral of 1/(x^2+1) from s to inf with s=1
@AndyBaiduc-iloveu
@AndyBaiduc-iloveu Сағат бұрын
Ok , I kinda get it ! Thanks!
quite a nice couple of problems
12:25
Michael Penn
Рет қаралды 7 М.
The Simple Math Problem That Revolutionized Physics
32:44
Veritasium
Рет қаралды 8 МЛН
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН
黑天使被操控了#short #angel #clown
00:40
Super Beauty team
Рет қаралды 61 МЛН
She made herself an ear of corn from his marmalade candies🌽🌽🌽
00:38
Valja & Maxim Family
Рет қаралды 18 МЛН
a nice divisibility problem
12:38
Michael Penn
Рет қаралды 7 М.
cosine in recursion
14:17
Michael Penn
Рет қаралды 6 М.
The Dual Numbers
9:15
John Mount
Рет қаралды 9 М.
But What's Feynman's Trick All About?
6:23
Bro, do some maths.
Рет қаралды 78 М.
Gifted Geeks | The Big Bang Theory
23:32
Big Bang Theory
Рет қаралды 85 М.
Fundamental Theorem of Calculus Explained | Outlier.org
16:27
OutlierOrg
Рет қаралды 391 М.
Why We've Only Cured HIV Seven Times
12:05
SciShow
Рет қаралды 230 М.
your Calculus teacher lied* to you
18:26
Michael Penn
Рет қаралды 59 М.
What is Integration? 3 Ways to Interpret Integrals
10:55
Math The World
Рет қаралды 407 М.
Isomorphisms Explained - Group Theory Ep. 2
35:27
Nemean
Рет қаралды 5 М.
Une nouvelle voiture pour Noël 🥹
00:28
Nicocapone
Рет қаралды 9 МЛН