The best video on the topic I have seen so far. Well done.
@seank44225 жыл бұрын
Incredible video and explanation. Felt like I was watching a 3B1B video. Thank you!
@tuber123214 жыл бұрын
Yes, it uses very similar background music!
@TheBlenderer5 жыл бұрын
Awesome, thanks for the very clear explanation! Each step was quite "differentiable" in my head :)
@Terrial-tf7us9 ай бұрын
you are amazing at explaining this concept in such a simple and understandable manner mate
@abdjahdoiahdoai Жыл бұрын
this is so good, please don’t stop making videos!
@adamconkey27714 жыл бұрын
Thank you for this nice video, I've been struggling through some blog posts and this immediately cleared some things up for me. Great work!
@tiejean28513 жыл бұрын
Thank you so much for making this video! Best video on this topic I've watched so far
@yannickpezeu34193 жыл бұрын
Wow... I'm speechless. Thanks ! Amazing quality !
@dbtmpl14375 жыл бұрын
That's absolutely brilliant. Keep up the good work!
@michaelcarlon18315 жыл бұрын
This kind of video is super useful to the community! Thank you!
@romolw68974 жыл бұрын
This is a great video! Each time I watch it I learn something new.
@prithviprakash11103 жыл бұрын
Great explanation, it all makes sense now. Gonna keep come backing anytime I need to revise.
@kazz8114 жыл бұрын
This is some pretty high level pedagogy. Superbly done, thanks!
@benren90044 жыл бұрын
This is just such an elegant explanation.
@Zokemo4 жыл бұрын
This is really beautiful. Keep up the amazing work!
@ScottLeGrand5 жыл бұрын
Short, sweet, and comprehensive...
@brown_alumni Жыл бұрын
This is neat. Awesome graphics.. Many thanks!
@user-or7ji5hv8y4 жыл бұрын
great video! This is definitely the best video on this topic.
@davidhendriks13953 жыл бұрын
Great video! Was looking for a clear explanation and this did the trick.
@matthiasherp93872 жыл бұрын
Amazing explanations! I#m currently learning about normalising flows with a focus on the GLOW paper for a presentation and this video really gives a great overview und helps put different concepts together.
@poulamisinhamahapatra81044 жыл бұрын
Great visualisation of a complicated concept and lucid explanation. Thanks :)
@annasappington59113 жыл бұрын
Fantastic video! Thanks for the hard work you put into these.
4 жыл бұрын
Great video! Gonna have to watch it again.
@tabesink4 жыл бұрын
Please put out more content! This was an amazing explanation.
@sShivam75 жыл бұрын
Incredible explanation!
@lesleyeb4 жыл бұрын
Awesome video! Thanks for putting it together and sharing
@maximiliann.54103 жыл бұрын
Thank you for the nice breakdown!
@philippmourasrivastava38606 ай бұрын
Fantastic video!
@CristianGutierrez-th1jx9 ай бұрын
Hands down the best intro to gen models one could ever had.
@李扬-n7k Жыл бұрын
the most clear I have see
@hanwei59874 жыл бұрын
Amazing explanation & presentation :)
@samuelpanzieri78674 жыл бұрын
Great video, made a pretty difficult topic very clear!
@arrow0seb4 жыл бұрын
Great video. I hope you release more like it! :)
@jehillparikh4 жыл бұрын
Great video and visualisation!
@najinajari35314 жыл бұрын
Very clear explanation. Thanks a lot :)
@superaluis4 жыл бұрын
Thanks for the great explanation!
@michaellaskin34074 жыл бұрын
Such an excellent video
@jg91934 жыл бұрын
Please make more videos like this
@simonguiroy66364 жыл бұрын
Great video, well explained!
@huajieshao52263 жыл бұрын
awesome video! Like it so much!
@praveen37795 ай бұрын
Nice video, thankyou. But can you explain how this fits inside overall architecture of any simple Generative model and also how it can be implemented in code? Or just point me to a resource where I can find it.
@alvinye99002 жыл бұрын
Awesome video! Thanks!
@matthias22614 жыл бұрын
Nice! This is absolutely breakfast-appropriate.
@ayankashyap53796 ай бұрын
Maybe this is a little late but at 4:24 , shouldnt the base distribution of z be parameterized by something other than theta? Usually that is a gaussian whose MLE estimate can be obtained in closed form.
@matakos223 жыл бұрын
Thank you so much for this!
@chyldstudios2 жыл бұрын
Great explanation!
@DavidSimonTetruashvili3 жыл бұрын
I think there may be a typo at 5:48. The individual Jacobians suddenly go to be taken wrt z_i instead of x_i, in the second line. That is not so, right?
@ChocolateMilkCultLeader2 жыл бұрын
Please keep making videos
@zhenyueqin69104 жыл бұрын
Amazing! Thanks!
@antraxuran94 жыл бұрын
Great video! I spotted a minor terminology mistake: you are referring to the evidence using the term "likelihood", which might confuse some folks
@saharshayegan Жыл бұрын
Thank you for the great explanation. What I don't understand here is the reason why we are looking for p_theta(x). Shouldn't it be p_phi(x)? (by phi I mean any other parameter that is not theta) Since we are looking for the probability in the transformed space.
@ariseffai Жыл бұрын
Thanks for the question. While using a single symbol for the model's parameters is a standard notation (e.g., see eq. 6 from arxiv.org/abs/1807.03039), I agree that using two distinct symbols would've been a bit clearer and indeed some papers do that instead :)
@robmarks68003 жыл бұрын
Amazing, Keep at it!
@sergicastellasape5 жыл бұрын
Great explanation!! I hope more videos are coming. I have a question, I don't really understand the benefit from the coupling layer example about "partitioning the variable z into 1:d and d+1:D". As explained in the video, you still need to ensure that the lower right sub-matrix is triangular to make the jacobian fully triangular. Then, isn't just more "intuitive" to say: the transformation of each component will "only be able to look at itself and past elements"? Then any x_i will only depend on z_{1:i} so the derivative for the rest will be zero. You still need to impose this condition on the "lower right sub-jacobian", then what's the value of the initial partitioning? Thanks!
@ariseffai5 жыл бұрын
Thank you and great question! The setup you describe is certainly one way of ensuring a fully triangular Jacobian and is the approach taken by autoregressive flows (e.g., arxiv.org/abs/1705.07057). But not only do we want a triangular Jacobian, we need to be able to efficiently compute its diagonal elements as well as the inverse of the overall transformation. The partitioning used by NICE is one way of yielding these two properties while still allowing for a high capacity transformation (as parameterized by m), which I think was underemphasized in the video. In the additive coupling layer, not only is the lower right sub-Jacobian triangular but it’s just the identity, giving us ones along the full diagonal. And the identity implemented by the first transformation (copying over z_{1:d} to x_{1:d}) guarantees g will be trivially invertible wrt 1st arg since the contribution from m can be recovered.
@curtisjhu Жыл бұрын
amazing, keep it up
@eyal86153 жыл бұрын
Well explained!
@lucasfijen5 жыл бұрын
Thanks a lot!
@ThePritt124 жыл бұрын
cool video, thanks! What video editing tools do you use for the animations?
@ariseffai3 жыл бұрын
This one used a combination of matplotlib, keynote, & FCP. I've also used manim in other videos.
@brycejohnson92914 жыл бұрын
that was a great video!
@junli98894 жыл бұрын
@8:12 I believe here is grossed over: it seems to be the essential part, how to "make sure the lower right block is triangular"?
@karanshah16982 жыл бұрын
Isn't the Jacobian here acting more like a Linear Transformation over the 2D example of unit square? How is it a Jacobian? I seem to be confused on the nomenclature here. Also because these are chained invertible transforms with a nonzero determinant, can't we just squash all like a Linear Transform into one?
@MDNQ-ud1ty11 ай бұрын
I think the way you explained the probability relationships is a bit poor. For example p_t(x) = p_t(f_t^(-1)(x)) would imply the obvious desire for f_t to be the identity map. If x is a different r.v. then there is no reason one would make such a claim. The entire point is that the rv's may have different probabilities due to the map(and it may not even be injective) and so one has to scale the rv's probabilities which is where the jacobian comes in(as would a sum over the different branches). It would have been better to start with two different rv's and show how one could transform one in to another and the issues that might creep. E.g., This is how one would normally try to solve the problem from first principles. The way you set it up leaves a lot to be desired. E.g., while two rv's can easily take the same value they can have totally different probabilities which is the entire point of comparing them in this way. I don't know who would start off thinking two arbitrary rv's would have the same probabilities and sorta implying that then saying "oh wait, sike!" isn't really a good way to teach it.
@TyrionLannister-zz7qb9 ай бұрын
Are the animations and sound track inspired from a channel named 3Blue1Brown ?
@motherbear554 жыл бұрын
Thanks for this explanation! Could you recommend on online class or other resource for getting a solid background in probability in order to better understand the math used to talk about generative models?
@sehaba9531 Жыл бұрын
I am actually looking for the same thing, if you have found something interesting !
@user-or7ji5hv8y3 жыл бұрын
How do we find such a function f that performs the transformation? Is it the neural network? If so, wouldn’t that just be a decoder?
@p.z.83553 жыл бұрын
what is the connection of this to the reparametrization trick?
@shiva_kondapalli4 жыл бұрын
Hi! Amazing video and visualization. Curious to know if the software used for the graphics was manim?
@ariseffai3 жыл бұрын
Not in this particular video, but there are several manim animations in my other videos :)
@user-or7ji5hv8y3 жыл бұрын
Why would adjacent pixels for an image have autoregressive property?
@stacksmasherninja72662 жыл бұрын
Great video ! Can you also make a video on gaussian processes and gaussian copulas?
@ejkmovies59410 ай бұрын
giving my 3blue1brown vibes. Amazing video.
@ayushgarg704 жыл бұрын
amazing
@sherlockcerebro4 жыл бұрын
I looked at the RealNVP and I can't seem to find the part where the latent space is smaller than the input space. Where could I find it?
@朱欣宇-u7q4 жыл бұрын
Awesome
@albertlee53124 жыл бұрын
So what is normalizing flow?
@qichaoying44783 жыл бұрын
For Chinese readers, you can also refer to Doctor Li's lecture: kzbin.info/www/bejne/q4m8Ymukr8mGqa8
@WahranRai5 күн бұрын
Background music is disturbing. Did you study at university with music !
@CosmiaNebula4 жыл бұрын
The formula at 1:12 is wrong. The x on the right should be z. Similar for other formulas later.
@ariseffai4 жыл бұрын
f is defined to be a mapping from Z to X. So f^{-1} takes x as input.
@EagleHandsJonny4 жыл бұрын
Got that 3blue1brown background music
@RamNathaniel6 ай бұрын
Thanks for the video, but the background music put me to sleep - please change for next time.
@wenjieyin76243 жыл бұрын
one mistake: NF cannot reduce dimensions!
@chadgregory90373 жыл бұрын
this totally has something to do with principle fibre bundles doesn't it..... this is that shit James Simons figured out back in the 70s
@stazizov10 ай бұрын
Hello everyone from 2024, it seems the flow-matching hype has begun
@gapsongg Жыл бұрын
Bro it is really hard to follow. Nice mic and nice video editing, but the content is way to hard. Really really hard to follow.