People ended up here, either proving that their school teachers are being lousy, or they don't pay attention during the lecture. Or perhaps simply that Patrick is cool.
@dextermorgan96099 жыл бұрын
. 念來過反會才頭木 All of the above for me my friend.
@hurrdurr259 жыл бұрын
+. 念來過反會才頭木 more likely the teachers are lousy. people that don't pay attention probably wouldn't care to learn how to do the work and never make it to these videos.
@thewiseone97989 жыл бұрын
+. 念來過反會才頭木 Why do you have Chinese characters in your name?
@patrickjmt9 жыл бұрын
+. 念來過反會才頭木 i think the correct answer is: all of the above (especially the last part)
@ConnorJW968 жыл бұрын
+. 念來過反會才頭木 Integration and differentiation are always good things to practice, as they crop up all the time. I find myself coming back to this video (and others by PatricksJMT's) to refresh my memory. Very useful!
@mileywaffle10 жыл бұрын
Thank you SO MUCH. I've been subbed and watching your videos for 2 years now. I really appreciate that you keep it free and accessible.
@douglasleigh28314 жыл бұрын
The
@jackmathieson1903 Жыл бұрын
In my opinion, knowing which method of integration to use is the hardest part of A Level Maths. I've got my Pure exam tomorrow.
@Agreedtodisagree11 жыл бұрын
I can't emphasize this enough, practice practice and practice. If you think you got it, then choose a hard problem and then try it. And kudos to this guy for having such a love for math.
@ahmadzaka98854 жыл бұрын
Not even kidding, this video probably just saved my life, you have no idea how much this helped me.
@ThePharphis11 жыл бұрын
After a few years of calc I'm feeling pretty confident about most integrations, but I still think this video is helpful.
@intelliza72489 жыл бұрын
Write the numerator as (1-e^x) +2.e^x and then split it in two parts ,integration of first part is x and to integrate the second part substitute u=(1-e^x)
@212ntruesdale6 жыл бұрын
BINGO!!!!!!!
@CheapPhysics3 жыл бұрын
Bingoooooo.....
@johnman53912 жыл бұрын
Hey, I'm still learning this stuff can you explain that more simply? Is that method simpler?
@kelbyreyes35998 жыл бұрын
why do i always have a feeling that i'm doing everything wrong :(
@finback20058 жыл бұрын
+Kelbypursuer ' it not just you
@markoplahuta82846 жыл бұрын
because you are lazy and think everything will just magically look solvable xD So you give up as soon as something starts looking more complicated than it was. First thing, you see people like patrick solve what they have either already solved or they have a lot of experience in solving and of course that it is gonna look like it's supposed to be easy. Secondly, most important thing is to know the basics. Yes, you can overcomplicate a problem to an extent at which you should start over or look up the answer, BUT, be sure that you have at least gotten to that point by using correct "mathematics" (aka didn't miss a minus, didn't do something that you can't with square roots etc. Basically don't integrate some function, before you know what that function is, how it behaves, how its plot looks, what can you do with it with some algebra . And do keep going, even when it looks like next step will require too much effort to do. You slowly train that way
@vanessasarahilizarragaoliv65914 жыл бұрын
hey nono, don´t feel like that, you must trust yourself, you´re learning so you are fixing your mistakes, it´s ok while you are understanding what you do
@DylanM3333 жыл бұрын
because calculus is a deep ocean of knowledge and you literally build billions of brain pathways to be successful.
@jacobbchapman56442 жыл бұрын
Integrals are hard.
@hari85687 жыл бұрын
simply divide num and denom by e^x then we get e^-x+1 divide by e^-x -1 then add to num +1-1 and split integral we get integral e^-x /e^-x -1 + integral e^x /1-e^x.solving by substituting for both integrals by t=e^-x -1 andt=1-e^x in the end we get -log(e^-x -1)-log(1-e^x)
@Peter_198610 жыл бұрын
Awesome, integration is just what I need to practice for my exam in Linear Algebra & Integral Calculus. Thanks a lot.
@patrickjmt11 жыл бұрын
yes, i will make one eventually ! it would be a great one to make, i agree
@nickthorpe75676 жыл бұрын
I split the numerator up into 1-ex+2ex so that I could split the fraction up into int[ 2ex/(1-ex) + (1-ex)/(1-ex) ]dx Then you get left with Int[2ex/(1-ex) + 1]dx Int[2ex/(1-ex)]dx + x Let u=1-ex Let du=-exdx -Int[2/u]du + x 2ln|u| + x 2ln[1-ex] + x + c Little bit more intuitive to me imo!
@JirivandenAssem Жыл бұрын
Yep for me 2
@executorarktanis23234 жыл бұрын
the first substitution was a eye opener
@ladicius11 жыл бұрын
as a current student in differential equations, i have one bit of advice for you: try to find the staedtler liquid point 7 pens (that are actually a 0.4mm tip). as a user of the v5's for many semesters, the switch was absolutely fantastic for me. it's worth giving them a test run. thanks for the videos. i like watching them over breakfast some mornings.
@dreia24058 жыл бұрын
you made this very easy integral complicated, just add e^x and subtract e^x from de numerator
@kkamous72788 жыл бұрын
yes I feel happy from your reply . I get lots of help from your integration videos. you're so genuine . tomorrow I have presentation in university and I got lots oh help from your video s.
@patrickjmt11 жыл бұрын
and mainly, this is how i did it :) i do not claim it is the fastest, but i do claim it works.
@billwindsor42248 жыл бұрын
Great explanations here, Patrick. I purchased the worksheet -- it's excellent (and inexpensive); I encourage you to develop more worksheets, and to give them more visibility in your video posts!
@patrickjmt11 жыл бұрын
it does not have an elementary antiderivative ; you have to use series to do this
@flupypersonyui34889 жыл бұрын
That's gold, Jerry! Gold!... I mean Patrick.
@Monadoabyss11 жыл бұрын
A quicker way: (1+e^x)/(1-e^x) is just -coth(x/2) which can be easily integrated as it's in the form f'(x)/f(x).
@ghostkr36768 жыл бұрын
Thanks man..... I always wondered how to start..... and you cleared my doubt
@BubbleGumCMM11 жыл бұрын
i wanted a video for this! nice timing. THANKS PATRICK!
@edgaracosta99769 жыл бұрын
I'd just like to comment that there is a way to at least know how to approach one type of integration problem. If you are multiplying or dividing two functions of a different type, the only approach is integration by parts. For example, finding the integral of (x^2 + 2)(sinx) dx. This type of problem would be impossible to do through substitution because in the most general cases, you need the functions to be of the same type, that way you have a chance of figuring out which one is the derivative of which.
@fergusfs706 жыл бұрын
In your final answer you leave ln(e^x) which can just be written as x
@blackham75 жыл бұрын
But it helps us students see what's going on. He might know that but we might miss that.
@satrickptar62655 жыл бұрын
I'm thanking my advanced algebra teacher in grade 9 ;-; it really helped me in integral calculus in grade 10!
@marcusrayrosales17 жыл бұрын
This is way easier than shown here! First, multiply top and bottom by e^{-x/2}, so that: (1+e^x)/(1-e^x) becomes: -(e^{x/2}+e^{-x/2})/(e^{x/2}-e^{-x/2}) ==-cosh (x/2)/sinh (x/2) The integral is easily seen to be: -2ln [sinh (x/2)]■ knowledge of hyperbolic sines and cosines are not necessary here; just do the first step of multiplying by e^{-x/2}, then let u be the denominator. All so much easier than this video shows.
@jackmcclane61132 ай бұрын
I think you need to know that he’s not solving maths for himself, he is showing it to learners in details no need for a short way!!! When students understood the detailed procedures, then short way is now great.
@patrickjmt11 жыл бұрын
the second you can do with a u sub, but you still need to do the same type of substitution i did (i think!) for the first one
@JirivandenAssem Жыл бұрын
Brother always see if u can write the numerator as the denominator. I immedoately see that u can add 2ex to the nominator to get 1-ex+2ex. Split integral and notice one is x and one is ln(1-ex) cos derivative of ex is ex In the end, a usub is not even needed !
@mohanarora19 жыл бұрын
You are amazing dude . Became a die hard fan of your s after this video
@baburo10111 жыл бұрын
Finally, Pat's saving some trees!
@Darwinion6 жыл бұрын
Can that final answer be simplified to: x - 2ln(1-e^x) + c..... as ln (e^x) = x ???
@jmadluck4 жыл бұрын
I thought the same but I'm not sure if the absolute value messes with that
@shashwatbajpai13504 жыл бұрын
You could have multiplied numerator and denominator by e^(-x/2) then you could have directly substituted your denominator as u then your numerator would have been - du and you would have got the answer in 3 steps
@lich20125 жыл бұрын
Hi friend. Good video. Could you explain the method for integrals with several sin and cos founctions where x must be changed for tan(t/2) (or something like that, i dont remember clear right now) please?
@soupisfornoobs40812 жыл бұрын
I believe that's called weierstrass substitution, you can look it up and get some interesting insights
@JirivandenAssem Жыл бұрын
Its the halfangle tangent substitution. Pretty easy, just check out wikipedia
@212ntruesdale6 жыл бұрын
You made a challenge out of a very easy integral if you make one very clever substitution. Instead of 1-e^x, make the numerator 1-e^x+2e^x. Then you have two integrals, intdx + 2int[e^x/1-e^x]. Couldn't be simpler!
@br575710 жыл бұрын
You are a wonderful teacher!
@matblitz46377 жыл бұрын
you. can also use substitute x =-t and then do it
@amak113111 жыл бұрын
This is indeed the hard part of Calc 2. Actual problem aside (my Calc 2 professor gave crazy integrals to do), the hard part is which method to use.
@yasploofyh83582 жыл бұрын
Hows life now? What are you up to?
@patrickjmt11 жыл бұрын
nope, never done anything at all with them.
@akarshansaraf7215 жыл бұрын
You could have easily done by dividing numerator and denominator by e^x/2 and then substituting e^x/2+e^-x/2=u
@patrickjmt11 жыл бұрын
then what
@mayahmed54768 жыл бұрын
Your the best. I have a final tomorrow and ur video helped me alot
@prateekgurjar16517 жыл бұрын
you're*
@yashwanthandaluri89346 жыл бұрын
sollu
@asiyaishal9 жыл бұрын
what if we take e^[x/2] out from both denominator & numerator..Then substitute the whole dnmtr term with 'u'....to get a integral [1/u]du form... #justAsking #student
@patrickjmt11 жыл бұрын
age and allergies and new microphones all do that
@HotPepperLala11 жыл бұрын
Can you do a video on Euler_substitution? And possibly Elliptic Integrals?
@OUSSA2 жыл бұрын
There is a much easier way in to write the top as 1-exp(x)+2exp(x) to simplify the integral and get 1+2(exp(x))/(1-exp(x))
@nascar1214111 жыл бұрын
I wish I had your awesome penmanship
@wyboo20193 жыл бұрын
im wondering if you could make it a trig integral by letting x = iu, and then e^x = cos(u) + i sin(u), but im not sure too what extent this is mathematically rigorous
@venkateshmangrulkar47766 жыл бұрын
In denominator quadratic is compulsory in partial fraction thats why i don't understand why u solve this by partial fraction
@dannyawesome633 жыл бұрын
I took Calculus at UC Davis back in 2015... and man.. I don’t remember any of this LMAOO
@hamid-we7vs2 жыл бұрын
At 4:40 , could you have used the reverse chain rule after doing the u-substitution ?
@Chemicalsworld768 жыл бұрын
Poti you work very good
@Andr29511 жыл бұрын
You rock bro
@peregrinefal660711 жыл бұрын
Why not split the first problem to: 1/(1-e^x) + e^x/(1-e^x) ?
@guitarttimman5 жыл бұрын
Very good.
@crazyphil77827 жыл бұрын
The easiest way to do this is using hyperbolic identies. 1 + e^x = e^(x/2) [ e^(x/2) + e^-(x/2) ] 1 - e^x = e^(x/2) [ e^-(x/2) - e^(x/2) ] So it is basically -1/tanh(x), and integrating that is child's play.
@ComandaKronikk6 жыл бұрын
dude thats what i thought immediately!
@ComandaKronikk6 жыл бұрын
still really helpful video
@seroujghazarian63436 жыл бұрын
7:47 you can't be serious! You should know that ln(e^x)=x, and e^x is always positive for all real x, so you can't tell me it is in absolute value because abs(e^x)=e^x no matter which value x has.
@DrHansPeterWurst11 жыл бұрын
that one is really fun...
@and_still.6 жыл бұрын
I just subscribed you. Thanx from India.
@japori200011 жыл бұрын
Yes yes yes. Just the video I needed!!
@kkamous72788 жыл бұрын
you are the great man. I love your work. you work for human. I love u so much. alas I meet with you . . I watch your video's. I think you are the best man in world of mathematics. May you live long. my prayer with you.
@patrickjmt8 жыл бұрын
+Muhammad Kamran Khan thanks for the kind words, I appreciate it :)
@sandyshores8921 Жыл бұрын
thank you.
@cypher45286 жыл бұрын
Hey man, the question (1+e^x)/(1-e^x) Is it OK if I possibly solved it by splitting it into 1/(1-e^x)+e^x/(1-e^x) Where I multiply (e^-x) to numerator and denominator of 1/(1-e^x) And gave (1-e^x)=t and e^x dx= -dt to e^x/(1-e^x)?
@damianflett63603 жыл бұрын
No. I do not permit it
@JC-cu2ym6 жыл бұрын
@patrickJMT cant we use Quotient rule to solve this example?? Instead of substitution?
@EverydayXperiment11 жыл бұрын
I wish I was this good!
@cypher45286 жыл бұрын
I only noticed that you are Left Handed after watching 10 of your videos.
@jacobbchapman56442 жыл бұрын
What's the difference between an Integral and an improper Integral?
@OUSSA2 жыл бұрын
Improper means it has an infinity in one of its boundaries or both
@sophiacarryl11 жыл бұрын
Do you have a video on the second theorem of calculus?
@hadireg8 жыл бұрын
great job! thanks!
@mengnjoeusebia13354 жыл бұрын
Please could you just create a mnemonic for that method
@mengnjoeusebia13354 жыл бұрын
I got it "kuit a trip"
@murugesankgm12975 жыл бұрын
you could do it by rationalising it and resolving
@beta577011 жыл бұрын
CHALLENGE ACCEPTED
@cepson2 жыл бұрын
It's weird to me that this problem can be solved by letting u = 0, when u is really e to the x and can't be 0. Yet it works.
@theBang4thebuck5 жыл бұрын
I’m in calc 2 and I’m about to throw in the towel
@gozao10011 жыл бұрын
i have a question is it normal a function to have more then one integral form?i mean a did this exercise and the result was x-2log(1-e^x)+c and it's the same result when i derive this or am i doing something wrong?
@TheHateraboi11 жыл бұрын
can you do a video on e^(pi i) = -1??
@alexgabel437911 жыл бұрын
please try to solve ∫e^(-x^2) dx. There's a way to solve it using a 2nd dimension (by squaring the whole thing) and then you get: ∫∫e^(-x^2-y^2) dxdy, but then I get stuck...
@lezero2119 жыл бұрын
Hmmm can't seem to understand the part where you used ln to solve for dx
@kyler25329 жыл бұрын
well it is the relationship between exponents and logarithms. When you multiply ln to e^x ( ln(e^x) ) you will get x. Also in order to make the equals sign true he multiplied the other side with ln. His way is much easier than trying to solve the integral when both u and du=e^x
@algebrayd11 жыл бұрын
are you the same person who does the cengagebrain solution videos??
@PranayMundra7 жыл бұрын
You could add and subtract e^x in the numerator and then take 1-e^x/1-e^x as one integral and the other as 2e^x/1-e^x where the substitution looks more familiar.
@veggiekeller9 жыл бұрын
For the problem finding the integral of (1 +e^x)/(1-e^x) why couldn't you just break up the fraction at the beginning and integrate 2 fractions (1/1-e^x) + (e^x/1-e^x)
@HamzaDjeloud6 жыл бұрын
This is a very easy way Thank you
@chasegregory13285 жыл бұрын
For every percent I get over 50% on my exam tomorrow, I'll donate $1.
@blackham75 жыл бұрын
Can I have the money
@damianflett63603 жыл бұрын
How much did you donate
@Grantbraner3 жыл бұрын
Hi Mr. Woody
@iBoom3RxX10 жыл бұрын
At 6:34, where did the denominator of -1 come from?
@LoneWolfKTG10 жыл бұрын
From the second u-sub that he shows immediately after...
@iBoom3RxX10 жыл бұрын
Thanks mate!
@LoneWolfKTG10 жыл бұрын
Ginzaki no prob!
@LoneWolfKTG10 жыл бұрын
Ginzaki oh and Dark Souls ftw !
@ch0vits10 жыл бұрын
gonna watch the partial fractions to understand this:)
@shahriarfardin7778 жыл бұрын
they are o level math how you can hope to watch this without learning those cuz integration is a level one
@idiosyncraticidiott501511 жыл бұрын
Cuz we all recognize -coth(x/2) when we see it
@rsmith56457 жыл бұрын
How do I integrate 1/(x^1/3+x^1/4)+ln(1+x^1/6)/(x^1/3+x^1/2)dx?
@damianflett63603 жыл бұрын
Do you still need to know
@JS-ns8dr3 жыл бұрын
@@damianflett6360 LMAOOO
@damianflett63603 жыл бұрын
@@JS-ns8dr can’t believe they never got back to me.
@realitycheck8164 жыл бұрын
Lol you could have just divided the numerator and denominator by e^x. Then it becomes an easy log integration. 3 lines maximum lmao
@bcarray9 жыл бұрын
what kind of pen is that? i had a same one and loved it but i can't find one anymore :'(
@pvic69599 жыл бұрын
+bcarray www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=precise+7+pen that might be of help
@wolfgangi7 жыл бұрын
I fucking hate integration by parts especially my memory is wiped out by my crippling alcoholism lol
@sineadh199410 жыл бұрын
where did the absolute value signs come from?? i understood it until there
@Peter_198610 жыл бұрын
The absolute value signs make the natural logarithm more general, so that it is valid for negative value of u as well. If you try comparing ln(u) and ln|u| on a graphing calculator then you can see this more clearly.
@lucasm42999 жыл бұрын
When we have 1/x and take the antiderivative we have to take into account the domain of the antiderivative. Derivative Ln(x) - 1/x The ln(x) domain is x>0 The values of 1/x respect the domain Antiderivative 1/x - Ln(x) The domain of 1/x is all numbers except 0, ln(x) can't take negative numbers so we have to find a way to extend its domain. |x| solves that problem. If you were wondering, d/dx ln|x| = 1/x
@fastchill11 жыл бұрын
an other option you should consider is partial integration.
@someshrao10876 жыл бұрын
sir, please give practice sheet free of cost ..please.
@baharosman14164 жыл бұрын
Derivatives are more lovely than integrations 😅
@JS-ns8dr3 жыл бұрын
hmm yeah true
@kkamous72788 жыл бұрын
I am really feel so happy because you reply me
@patrickjmt8 жыл бұрын
ha, glad i could make you happy :)
@zhubarb11 жыл бұрын
Thank you, this is elementary and useful information.
@patrickjmt11 жыл бұрын
ah, in that case, i will just delete all my videos ;)
@sabithasasikumar23911 жыл бұрын
Nooooooooooooo.....I discovered patrickJMT through google ;)
@JanCRefsgaard11 жыл бұрын
of course not!, then we run the risk of google suddenly not knowing!