I'm teaching myself Python and getting from basic knowledge to machine learning level is made so much easier by little explanations like this. I have to comb through code to make sure I understand exactly what is happening and where, and your efforts speed up my learning to no end! thanks!
@dataschool4 жыл бұрын
That's awesome to hear!
@meghasyam4273 жыл бұрын
Understood the point of having inplace parameter and why it is set to false by default. Great one again. Thanks
@dataschool3 жыл бұрын
You're welcome!
@mohamedbalshy31057 жыл бұрын
i liked your videos very much cause they are very clear, it makes me love Python and Data Science please don't stop making videos Thank you :)
@dataschool7 жыл бұрын
Thanks for your kind words and encouragement! :)
@BShubhashish3 жыл бұрын
I don't know why I didn't find your channel till now...your videos are super helpful; these help me understand things that I always wanted to ask someone in person. Thanks for putting your simple videos out here! superlike!!
@dataschool3 жыл бұрын
Thank you! 🙏
@ajaykhalsa96334 жыл бұрын
I really liked the way you made your videos in the form of questions. So when I have a specific question I just have to look for that video
@ZKissJade5 жыл бұрын
Omg I've been looking everywhere for an explanation on the inplace function and I don't know why everyone else just can't explain it properly when the explanation is so simple!!! Thank you so much, for teaching like a normal person.
@dataschool5 жыл бұрын
So glad to hear that I was able to provide you with some insight! 😄
@gunnarsamuelson90423 жыл бұрын
Very clear explanations. You are not only demystifying 'inplace' parameter but along with many other Panda's methods as well.Thank you so much .
@dataschool3 жыл бұрын
You're very welcome! Thanks for your kind words! 🙏
@kristalgordils36402 жыл бұрын
Watched 3 videos until I finally found this one with a clear explanation. ty
@dataschool2 жыл бұрын
You're welcome!
@andrewchen17443 жыл бұрын
This is the most clear explanation for "inplace". Thank you so much!
@dataschool3 жыл бұрын
You're very welcome!
@DownToEarthMind5 жыл бұрын
exceptionally well presented course for Python. Great job!
@dataschool5 жыл бұрын
Thanks!
@diyaqu70772 жыл бұрын
Lucky to see your video! Very clear and helpful! Especially for beginners.
@dataschool2 жыл бұрын
Thank you!
@ali1235ali12357 жыл бұрын
Your video is awesome! I was looking for a quick explanation of this puzzling parameter, and you explained so much than that! I will definitely check more of your videos ^^ Thank you so much!!!!
@dataschool7 жыл бұрын
You're welcome! And thanks for your kind comment :)
@gytisbliu26248 жыл бұрын
a big thanks to you! I finally understand what it does. By the way, I really love the suggestions that point to another video if a concept is being mentioned, but not explained.
@dataschool8 жыл бұрын
You're very welcome! And, I'm glad the suggested videos are helpful to you! I have been wondering whether it is worth the time to add those suggestions to each video :)
@reshaknarayan39446 жыл бұрын
Please don't stop making videos.
@dataschool6 жыл бұрын
I won't! :)
@TheErkin4 жыл бұрын
@@dataschool bro its been already 5 months please go on
@FrankHerfert8 жыл бұрын
no question here.. just a big thanks for your time!
@dataschool8 жыл бұрын
You're very welcome! I enjoy creating these videos :)
@adilzade6 жыл бұрын
You are great man! Not all heroes wear capes.
@dataschool6 жыл бұрын
You are too kind! :)
@owenodonnell32003 жыл бұрын
Phenomenal explanation! Liked and subscribed, thank you for making this so easy to understand!
@dataschool3 жыл бұрын
Awesome! Glad it was helpful to you!
@alexandremelo82992 жыл бұрын
Thats a very clear explanation. Thank you
@dataschool2 жыл бұрын
Glad it was helpful!
@fernandomaldonado24502 жыл бұрын
Thanks for this useful explanation man!! Greetings from Perú :D
@dataschool2 жыл бұрын
My pleasure!
@ItsWithinYou3 жыл бұрын
Superb! You are a great teacher and I instantly got this info that you shared in my head...Thank YOU!
@dataschool3 жыл бұрын
Thank you so much! 🙏
@paulreidy72248 жыл бұрын
These videos are great. I hope you will keep making them!
@dataschool8 жыл бұрын
Thanks! This is video 20, and I'll be making at least 30 :)
@s.baskaravishnu227 жыл бұрын
I very much congratulate you for sharing code used in video with us. Many thanks for that. It is very much useful to me. My warm regards to you.
@dataschool7 жыл бұрын
Thanks! Glad I could be of help!
@Al-Ahdal4 жыл бұрын
Your presentation, voice and videos are excellent. Very informative. I have a request, if you kindly make a "Comprehensive vdo Playlist on Data Analysis", it will be awesome. Thank you Kevin for awesome channel.
@dataschool4 жыл бұрын
Thanks! Here's the playlist: kzbin.info/aero/PL5-da3qGB5ICCsgW1MxlZ0Hq8LL5U3u9y
@rsmoot19838 жыл бұрын
I'm interested in learning more about the Panda's melt() function. Could you recommend anything on that topic or could you perhaps do a video on it? Thanks!
@dataschool8 жыл бұрын
Thanks for the suggestion, I'll see if I can cover it in a future video. I don't have any good resources on it off-hand, sorry!
@evagonzalez84553 жыл бұрын
Thank you very much for your videos, they are very useful and easy to understand, they are helping me a lot!
@oliverli96308 жыл бұрын
Great! I was just looking for this everywhere before youtube suggested you. Thanks ;)
@dataschool8 жыл бұрын
Great! You can watch the whole pandas series here: kzbin.info/aero/PL5-da3qGB5ICCsgW1MxlZ0Hq8LL5U3u9y
@oliverli96308 жыл бұрын
;)
@brendensong80004 жыл бұрын
Thank you for another great video!
@dataschool4 жыл бұрын
Thank you Brenden! 🙌
@HarshSharma-tx3dw5 жыл бұрын
Thank you so much for your effortless teaching ways. I just started learning Data analysis with python and started watching your videos on the recommendation of my friend. I see that most of your videos are 2 years old. So by any chance can you please upload a video on how pandas changed over this period of 2 years. What's new in panda and what's going to obsolete in the near future. That would be of great help. Also can you please recommend any book or study reference from where I can learn more about Data science with python.
@dataschool5 жыл бұрын
I have a few pandas resources on this page that may be helpful to you: www.dataschool.io/start/
@QB_Quotes5 жыл бұрын
Thank you very much. U gave me a point of understanding. It's really a cool option. :)
@dataschool4 жыл бұрын
You're welcome!
@razydave53914 жыл бұрын
OMG!!! AMAZING AS ALWAYS!!!!!!
@izainonline Жыл бұрын
Thanks for the info please explain can we save the cleaned data which is ready for model saved with new CSV or XL file for future use
@dataschool Жыл бұрын
You would use the DataFrame method .to_csv()
@erenhan3 жыл бұрын
Hi Kevin, I have a question whats the main difference between making df=df.drop() , df.drop(inplace=True) in terms of efficiency ?
@dataschool3 жыл бұрын
Not sure off-hand, sorry!
@analemma.inflection8 жыл бұрын
Love this series!
@dataschool8 жыл бұрын
Awesome! Feel free to let me know if you have any suggestions for future videos.
@ajaykushwaha-je6mw2 жыл бұрын
Hi , I tried the same to impute missing value in Titanic data set but this is not working. df[(df['Age'].isnull()) & (df['Pclass']==2)].fillna(29,inplace=True)
@gui15428 жыл бұрын
Hello Kevin! I have a question that came up when working in a ML problem. Sometimes, when you use sklearn's functions you have to convert the df into a numpy nd.array, which, as far as i know, will make you loose the column names of the df. Now suppose i did something with a numpy array that was previously a df, how to i convert it back, with the proper column names? For example, suppose you did a feature selection procedure that returned a boolean vector for which columns it used. How do i proceed if: 1. I just want to know which columns are marked with True of false and subset those. 2. Transform the numpy array (like "unormalizing it or somthing") and name the columns properly (with or without the boolean conditions)
@dataschool8 жыл бұрын
Lots of great questions! You are correct that NumPy arrays don't have column headers. Let's pretend that you had a pandas DataFrame (df) and a NumPy array (arr) with the same contents. To recreate the DataFrame from the array, you can just use: df2 = pd.DataFrame(arr, columns=df.columns) Let's then say that you created a list of booleans (bool) that tells you which columns you're interested in. To select those columns, you can just use: df2.loc[:, bool] If you just want to know the names of those columns, you can use: df2.columns[bool] Does that help?
@listerneiltianchon8886 Жыл бұрын
Hi how can I export data set after I manipulate the data set. ex. df['Zoom_Name'].value_counts() I want this data to be exported to csv without affecting the main data set.
@dataschool Жыл бұрын
Great question! Convert the results to a DataFrame and then use the .to_csv() method.
@AZ993k Жыл бұрын
Very helpful, thank you!
@dataschool Жыл бұрын
Glad it was helpful!
@SuperDashdash8 жыл бұрын
I am becoming a fan of you man!
@dataschool8 жыл бұрын
Thanks! Feel free to subscribe to the Data School newsletter if you haven't already :) www.dataschool.io/subscribe/
@abusaleham8 жыл бұрын
Thank you Kevin, your videos are really knowledgeable and I have a question regarding usage of Pandas for handling unstructured or semi-structured data as most of your videos are dealing with structured data, just curious to know is there any examples for showing usage of pandas or it provides any data structures for handing unstructured or semi-structured data..?
@dataschool8 жыл бұрын
Generally speaking, pandas is most useful when the data is already structured, but you can also use pandas to add structure to your data. However, other tools might be better for this task - it really depends upon the particulars of the data.
@josephselwan16523 жыл бұрын
Amazing video.
@dataschool2 жыл бұрын
Thank you!
@cocum26 жыл бұрын
Hey, I'm using a MacBook and when I press the shift button, it doesn't appear the textbook that appears in your videos, there's any other way to visualise that on Mac?
@dataschool6 жыл бұрын
I'm sorry, I don't understand your question. Could you clarify? Thanks!
@Elausis5 жыл бұрын
Thank you Sheldon!
@dataschool4 жыл бұрын
😄
@tayebzlezel92224 жыл бұрын
you are a gift sent from god my dear friend. Thank you
@dataschool3 жыл бұрын
Wow, thank you!
@subhamsharma13824 жыл бұрын
Sir i was finding some videos on step by step guidance of learning all the mahine learning algorithms with their use cases, can u please help me with it sir?
@dataschool4 жыл бұрын
I don't have such a video, sorry!
@u0000-u2x8 жыл бұрын
Could you do a video about handling large CSV files in Pandas (ex: over 3 gb)? For example, is there a practical way to randomly sample rows? Thank you for your videos
@dataschool8 жыл бұрын
Great question! If you have already read the file into a DataFrame, there is a "sample" method you can use for random sampling. If you're trying to randomly sample rows as you read them in, I'd have to think about whether that can be done. I'll consider that for an upcoming video!
@dataschool8 жыл бұрын
I featured your question in a new video that I just posted... hope it helps! kzbin.info/www/bejne/pXmWqIyBq9yjgJo
@u0000-u2x8 жыл бұрын
I just watched that video! Thank you for answering and featuring my question :)
@dataschool8 жыл бұрын
You're welcome :)
@otakuza50122 жыл бұрын
Thank you, very well explained :)
@dataschool2 жыл бұрын
Thank you!
@piyushgupta8097 жыл бұрын
That was Helpful , Thanks a lot !
@dataschool7 жыл бұрын
You're welcome!
@loaiabdallatif49476 жыл бұрын
you are great Instructor
@dataschool6 жыл бұрын
Thanks!
@sabooalex5 жыл бұрын
Hi, Thanks for your videos! I have a test case where in I have to read a file with Year/date as a column and I want to split them by year.The requirement is the dataframe name should be like sales_2018, sales_2019,sales_2020 .This will help me to iterate them in a for Loop.Also is there any way to parameterize python code. e.g. I have a variable name Year=2018, and in the dataframe statement I write sales_&year and it should get resolved to sales_2018 and so on.Thanks in advance .Ashish
@dataschool5 жыл бұрын
I'm sorry, this is beyond what I can answer in a KZbin comment! If you want to ask a detailed question, you're welcome to join Data School Insiders and ask it in a webcast or in the forum: www.patreon.com/dataschool
@ellenarunwatertf8 жыл бұрын
Amazing videos. Thank you so much!
@dataschool8 жыл бұрын
You're very welcome!
@Zerofire185 жыл бұрын
So, when you use the inplace feature set to True, it changes the data from the source (the bit.ly file) or just the dataframe in pandas created from it? So, say I have an excel file I'm working on and drop a column and use the inplace=True, will it alter the original excel file? Love your videos, by the way, I have learned so much!
@dataschool5 жыл бұрын
inplace just changes the DataFrame, and not the source file. Glad you like the videos!
@mohammadabulhasnat43874 жыл бұрын
But I have a question that why some method of pandas have inplace and other don't.
@dataschool4 жыл бұрын
It's hard to generalize, but it makes sense for some methods and not for others.
@jillianhade16678 жыл бұрын
Could you do a video on pd.melt, please?
@dataschool8 жыл бұрын
Thanks for the suggestion! I'll consider it for the future.
@vishalkap625 жыл бұрын
Does pandas have any function by default "inplace='True'"??
@dataschool5 жыл бұрын
Not that I can think of.
@gadgetsfunnel28863 жыл бұрын
Thank you so much sir
@dataschool3 жыл бұрын
You're very welcome!
@rakesho69756 жыл бұрын
Dear Kevin, thanks for great videos on pandas. Would you please also create a video on dataframe.corr() and VIF Thanks
@dataschool6 жыл бұрын
Thanks for the suggestion!
@aFAQuest7 жыл бұрын
This video was helpful and very easy to understand, indeed. While watching, a question came up which is not related to this topic but to python in general. You were using Python from a web interface i.e. you were server side scripting and executing. So my question is what is the name of this web interface? And moreover, do you have some tips/hints/tutorial how to set up Python on server side and using a database and/or server directory? I was thinking to use then Python over the web interface for ad hoc data analysis and for a routinely call, I may use my local Python client (Spyder/Anaconda). I Would be very happy if anyone can help me. Thanks a lot in advance!
@quafaruiz79177 жыл бұрын
Ok, I got it: It is called Jupyter. Easiest installation: Download Anaconda.
@dataschool7 жыл бұрын
Glad the video was helpful to you! Regarding your question, this interface is known as the Jupyter notebook (and was previously known as the IPython notebook). The second part of this video explains the notebook: kzbin.info/www/bejne/f6S7iZ-Pi6enZ68
@abdkumar13006 жыл бұрын
i didnt understand the difference b/w 'ffill' 'bfill' ''pad'.
@dataschool6 жыл бұрын
Does this help? pandas.pydata.org/pandas-docs/stable/missing_data.html#filling-missing-values-fillna
@pranishramteke76424 жыл бұрын
I am so used to his x2 speed voice I feel the normal speed weird now
@dataschool4 жыл бұрын
Ha! 😆
@NickMaverick4 Жыл бұрын
When i do ufo.tail why it shows keyerror : "None of ['Time'] are in the columns".. please someone explain
@dataschool Жыл бұрын
Are you using the tail method like this? ufo.tail()
@monotonous_06 ай бұрын
Because you have already executed the statement before so time is not a column now. I did the same mistake .. you have to restart the karnel to run all the cells from the beginning.