Which is larger??

  Рет қаралды 1,396,576

Michael Penn

Michael Penn

3 жыл бұрын

We determine whether 50^99 or 99! factorial is bigger three different ways.
Please Subscribe: kzbin.info...
Merch: teespring.com/stores/michael-...
Personal Website: www.michael-penn.net
Randolph College Math: www.randolphcollege.edu/mathem...
Randolph College Math and Science on Facebook: / randolph.science
Research Gate profile: www.researchgate.net/profile/...
Google Scholar profile: scholar.google.com/citations?...
If you are going to use an ad-blocker, considering using brave and tipping me BAT!
brave.com/sdp793
Buy textbooks here and help me out: amzn.to/31Bj9ye
Buy an amazon gift card and help me out: amzn.to/2PComAf
Books I like:
Sacred Mathematics: Japanese Temple Geometry: amzn.to/2ZIadH9
Electricity and Magnetism for Mathematicians: amzn.to/2H8ePzL
Abstract Algebra:
Judson(online): abstract.ups.edu/
Judson(print): amzn.to/2Xg92wD
Dummit and Foote: amzn.to/2zYOrok
Gallian: amzn.to/2zg4YEo
Artin: amzn.to/2LQ8l7C
Differential Forms:
Bachman: amzn.to/2z9wljH
Number Theory:
Crisman(online): math.gordon.edu/ntic/
Strayer: amzn.to/3bXwLah
Andrews: amzn.to/2zWlOZ0
Analysis:
Abbot: amzn.to/3cwYtuF
How to think about Analysis: amzn.to/2AIhwVm
Calculus:
OpenStax(online): openstax.org/subjects/math
OpenStax Vol 1: amzn.to/2zlreN8
OpenStax Vol 2: amzn.to/2TtwoxH
OpenStax Vol 3: amzn.to/3bPJ3Bn
My Filming Equipment:
Camera: amzn.to/3kx2JzE
Lense: amzn.to/2PFxPXA
Audio Recorder: amzn.to/2XLzkaZ
Microphones: amzn.to/3fJED0T
Lights: amzn.to/2XHxRT0
White Chalk: amzn.to/3ipu3Oh
Color Chalk: amzn.to/2XL6eIJ

Пікірлер: 1 500
@crko34
@crko34 3 жыл бұрын
Fourth way: Overkill - Calculate both numbers by hand
@pneumaniac14
@pneumaniac14 3 жыл бұрын
Even more over kill, take the logarithm of both sides and use binets log gamma functions.
@anindyaprithvi3585
@anindyaprithvi3585 3 жыл бұрын
@@pneumaniac14 even more overkill, use logarithm and Fermat's approximation
@MudahnyaFizik
@MudahnyaFizik 3 жыл бұрын
It's called the brute force
@shivansh668
@shivansh668 3 жыл бұрын
I think it is 1st one i.e. simple As the Michael said
@wasitahmid749
@wasitahmid749 3 жыл бұрын
Hyperkill subtract 50^99 FROM 99! In head and write the result in 10 secs
@vidblogger12
@vidblogger12 3 жыл бұрын
They are equal! I typed them both into my calculator, and they both evaluated to “overflow error”!
@lucassalomao4882
@lucassalomao4882 3 жыл бұрын
Kkkkkkkkkk
@Fierywell
@Fierywell 3 жыл бұрын
@@lucassalomao4882 ok?
@lucassalomao4882
@lucassalomao4882 3 жыл бұрын
@@Fierywell ok o que??
@Fierywell
@Fierywell 3 жыл бұрын
@@lucassalomao4882 oh spanish I see
@lucassalomao4882
@lucassalomao4882 3 жыл бұрын
A vc é gringo kk. Pelo nome "Pedro" achei q fosse BR irmao
@blackpenredpen
@blackpenredpen 3 жыл бұрын
I was expecting wolframalpha for the third method...
@MamuelMuel
@MamuelMuel 3 жыл бұрын
"by inspection"
@GKinWor
@GKinWor 3 жыл бұрын
isnt it
@anmoldeepsingh9281
@anmoldeepsingh9281 3 жыл бұрын
Can you help me with number of digits in a factorial without a program... I really want to prove this by inequality of number of digits. Edit: Nevermind.. got it.. stumbled upon Stirling’s approximation
@paritosh4643
@paritosh4643 3 жыл бұрын
BPRP! Nice to see you here :)
@flutcubasahmet1303
@flutcubasahmet1303 3 жыл бұрын
😂
@CousinoMacul
@CousinoMacul 3 жыл бұрын
The way we know that all the pairings are greater than one is that the denominators (51×49, 52×48, ... ,99×1) are of the form (50+n)(50-n) = 50^2-n^2 < 50^2
@jesusthroughmary
@jesusthroughmary 3 жыл бұрын
This is what I did to know in 5 seconds
@jesusthroughmary
@jesusthroughmary 3 жыл бұрын
Still watching to see whether this is one of his three ways
@abderrahmanyousfi5565
@abderrahmanyousfi5565 3 жыл бұрын
👍🏻👍🏻
@takyc7883
@takyc7883 3 жыл бұрын
That’s clever
@obst3085
@obst3085 3 жыл бұрын
Yeah, was very surprised to not see that by him, feels very intuitive
@jamirimaj6880
@jamirimaj6880 3 жыл бұрын
1:44 "Notice 49 + 49 is 98, plus one is ... 50" I learn something new everyday lol
@patryslawfrackowiak6690
@patryslawfrackowiak6690 3 жыл бұрын
yeah, that was great :D
@xevira
@xevira 3 жыл бұрын
This must be that "new" math I've been hearing about.
@Scrub_Lord-en7cq
@Scrub_Lord-en7cq 3 жыл бұрын
@@xevira it’s called h (t)= am
@TheNatureWatcher
@TheNatureWatcher 3 жыл бұрын
I do that sometimes talking not about math
@jamirimaj6880
@jamirimaj6880 3 жыл бұрын
@@xevira alternative math lol
@randybell101190
@randybell101190 3 жыл бұрын
3rd way: super easy, barely an inconvenience
@tamarpeer261
@tamarpeer261 3 жыл бұрын
Comments: you could have used amgm Whoops! Whoopsie!
@crko34
@crko34 3 жыл бұрын
Using wolfram alpha is tight
@riseciv7991
@riseciv7991 3 жыл бұрын
wow wow wow wow
@leif1075
@leif1075 3 жыл бұрын
@@tamarpeer261 whsts that arithmetic versus geometric mean you mean?
@AbhishekKumar-uu4uj
@AbhishekKumar-uu4uj 3 жыл бұрын
I understand your reference
@dnaiel
@dnaiel Жыл бұрын
At 3:35, I think a great way to show that all of the denominators are smaller than the numerators is by using difference of squares. You can express every denominator as (50 - n)(50 + n) for 0 < n < 50. This is equivalent to 50^2 - n^2, which is always smaller than 50^2.
@simonkiesewetter7389
@simonkiesewetter7389 Жыл бұрын
I was looking for that.
@danieljmarvin
@danieljmarvin 2 жыл бұрын
This is deeply related to 'e'. If you look at the power expansion of 'e', you'll find this form. It turns out the question of when the denominator starts to dominate the numerator is exactly a factor of 'e' away from the number. So, in this case, you'll see that 50 * e will be the place where the denominator starts to dominates the numerator. Now, floor of 50 * e = 135. So, (50^134) / (134!) is greater than 1, but (50^135) / (135!) will be less than 1. This then ties into the length of the side of the higher dimensional square, given an area of n!. So, 'e' is actually a constant that relates area and parameters between dimensions. As a consequence, you get the limit n / (n!)^(1/n) as n goes to infinity = e Try the limit out on wolfram alpha
@jedinxf7
@jedinxf7 2 жыл бұрын
awesome!
@hagenfarrell
@hagenfarrell Жыл бұрын
@DukeOfDystopiaeither self taught, or they are a math major at uni.
@Gochsener
@Gochsener 3 жыл бұрын
after having watched the first part: its basically squares vs. rectangles. when you have a set length of all sides combined, the surface area is always biggest when you make it a square. the longer and slimmer it gets, the less area it has (down to a line with no surface)
@Flimzes
@Flimzes 3 жыл бұрын
I was thinking the same thing, he just proved that for a given circumference, a square gives the largest area of any rectangle
@venky1777
@venky1777 3 жыл бұрын
Great observation
@martinsonnleitner5516
@martinsonnleitner5516 2 жыл бұрын
Thought exactly the same! Also way more elegant than the brute force induction! 👍👍
@paneerpulao
@paneerpulao 2 жыл бұрын
Yeah I like to say it in this way (x)(x) > (x-a)(x+a)
@sirnate9065
@sirnate9065 2 жыл бұрын
This was exactly my first thought as well! Although I would've explained it much less clearly.
@javizaragoza1463
@javizaragoza1463 3 жыл бұрын
10:08 That’s a silent way to stop
@ivanlazaro7444
@ivanlazaro7444 3 жыл бұрын
Spanish troupe?
@javizaragoza1463
@javizaragoza1463 3 жыл бұрын
@@ivanlazaro7444 confirmamos
@elcalabozodelandroide2
@elcalabozodelandroide2 3 жыл бұрын
@@ivanlazaro7444 confirmo
@caladbolg8666
@caladbolg8666 3 жыл бұрын
Thanks for another great video! Though I think it would've been good to note that e.g. 49*51=(50-1)(50+1) , and 48*52=(50-2)(50+2) etc. so all of the denominators are of the form (50-a)(50+a) which is 50^2-a^2 so it's less than 50^2.
@divyanshaggarwal6243
@divyanshaggarwal6243 3 жыл бұрын
I dont think it was necessary to make a rigorous proof of the statement.Though in an exam scenario, it would probably be necessary.
@wyseebbah7193
@wyseebbah7193 3 жыл бұрын
@@divyanshaggarwal6243 Yah, it definitely isn't necessary. It's much easier than calculating though as you don't even have to look at numbers. It's a bit harder to explain I would guess though.
@michawielgus9827
@michawielgus9827 3 жыл бұрын
It actually is easier since you dont need to calculate 49*51 etc, just show that a^2
@plaplanet
@plaplanet Жыл бұрын
そうそう
@toddbiesel4288
@toddbiesel4288 3 жыл бұрын
1:45 2:20 ...and that's a good place to check your arithmetic.
@moonlightcocktail
@moonlightcocktail 3 жыл бұрын
Take the 99th root of both sides and apply the AM-GM inequality.
@davidepierrat9072
@davidepierrat9072 3 жыл бұрын
yeah smh...
@Kokurorokuko
@Kokurorokuko 3 жыл бұрын
wow, nice method!
@user-wo5ug7sl9z
@user-wo5ug7sl9z 3 жыл бұрын
that was what I thought
@pandas896
@pandas896 3 жыл бұрын
There's one more
@pandas896
@pandas896 3 жыл бұрын
Method
@aamierulharith5294
@aamierulharith5294 3 жыл бұрын
I like the ending... for some reasons :p
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
10:15 Don’t be too hard on yourself and don’t forget to stay hydrated. No homework today, sorry folks. If you want a particular topic for the next one, tell me.
@Guilherme-xp1tv
@Guilherme-xp1tv 3 жыл бұрын
Is this the first non spoken "good place to stop"?
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
@@Guilherme-xp1tv I think it is
@adeolugboji3645
@adeolugboji3645 3 жыл бұрын
Can you do a counting/combinatorics question please?
@stephenbeck7222
@stephenbeck7222 3 жыл бұрын
Guilherme Castro Dela Corte, we need to get his kid to stroll up to the chalkboard and hold up a “that’s a good place to stop” poster.
@elihowitt4107
@elihowitt4107 3 жыл бұрын
Something w inveriants
@off4on
@off4on 3 жыл бұрын
Take logs on both sides, we have 99*log(50) > log(1) + ... + log(99) by Jensen's inequality since the logarithm is concave.
@TechToppers
@TechToppers 3 жыл бұрын
Bruh... I'm weak at inequality...
@samba272
@samba272 3 жыл бұрын
Jensen's inequality has a less or equal sign in it, not a less than sign.
@ahmedhamdy2870
@ahmedhamdy2870 3 жыл бұрын
Or take log base 99 equals !
@gamer966
@gamer966 3 жыл бұрын
That's what I first thought! Kudos!
@Merlin1908
@Merlin1908 3 жыл бұрын
While true, using Jensen here is definitely overkill. The general case follows directly from AM-GM by noting the arithmetic mean of 1,2,...,n is (n+1)/2, so (n+1)/2 is at least the geometric mean, which is the n’th root of n!. Take n’th powers, and we get the general case.
@3Black.1Red
@3Black.1Red 3 жыл бұрын
4th way. Apply the “engineer’s function” and make everything equal to 3.
@ianmoseley9910
@ianmoseley9910 3 жыл бұрын
3black1red Reminds me of the old comment about mathematicians want the exact answer, engineers are happy if the numbers are a reasonable match and astronomers are ecstatic if they have the roughly the same order of magnitude
@TS-jm7jm
@TS-jm7jm 3 жыл бұрын
@@ianmoseley9910 brilliant
@Pandajannick
@Pandajannick 3 жыл бұрын
oh yes, like that pie number
@neutronenstern.
@neutronenstern. 3 жыл бұрын
yea pi=3=e pi^2=g (thats actually pretty damn close due to the old definition of a meter being the length of a pendulum with a period of two seconds. With this definition g would be exactly pi^2 m/s^2 and if you are confused now since g has to be the same even if the def of a meter isnt the same, then you are not completely right. because g is 38622 inch/s^2)
@hybmnzz2658
@hybmnzz2658 3 жыл бұрын
Haha great joke bro. Definitely could not see it coming in this math puzzle video specifically about comparing arithmetic values. Jokes are hilarious when they are as innovative as this!
@iszslayermaxx9912
@iszslayermaxx9912 3 жыл бұрын
I guessed correctly from my experiences in carpentry and ordering materials. I thought it was interesting that perfectly square rooms only had a difference of 1 compared to rooms that had dimensions of the same square room +1 and -1 10 x 10 = 100 9 x 11 = 99 Extrapolating the method further, I learned it was the difference of squares. 10 x 10 example: From 100 9 x 11 = 99 difference of 1 squared 8 x 12 = 96 difference of 2 squared 7 x 13 = 91 difference of 3 squared 6 x 14 = 84 difference of 4 squared And so on. Math can strangely be fun especially showing the kids interesting tricks like this. Thank you.
@spacescopex
@spacescopex 2 жыл бұрын
MY SOLUTIONS: kzbin.info/www/bejne/i6uwqomOiJWLg8k kzbin.info/www/bejne/eJnXaohrn5xpnLs
@Misteribel
@Misteribel 2 жыл бұрын
Why does this remind me of the “99 bottles of beer” song? 😝
@yorgunkaptaan
@yorgunkaptaan 2 жыл бұрын
We could use Stirling's approximation too. n! ~ sqrt(2*pi*n)*(n/e)^n If we cancel some terms at the end: (1/2)^n > (1/e)^n we could get a pretty good correlation between two general forms!
@ashleyzinyk4297
@ashleyzinyk4297 3 жыл бұрын
I paired the terms of each series the same way that Michael did (99*1, 98*2, ... 51*49), and noted that each product has the form (50+k)(50-k). That equals 50^2-k^2. However, the pairwise products in 50^99 are always 50*50, and 50^2 is obviously larger than 50^2 minus k^2.
@user-su7tu6cg2k
@user-su7tu6cg2k 3 жыл бұрын
I think we can use also log function. 99!/50^99 = (99/50)(98/50)•••(2/50)(1/50) Use log function log(99/50) + log(98/50) + ••• + log(2/50) + log(1/50) < 0 [because, log(50/50) = 0 and (-log(1-(k/n))) > log(1+(k/n)) (n>0, k>0)] So 50^99 > 99! (I'm korean so I can't good english speaking. sorry guys)
@aradhya9550
@aradhya9550 Жыл бұрын
How do you know -log(1-(k/n)) > log(1+(k/n)) (n>0, k>0)]
@CjqNslXUcM
@CjqNslXUcM 3 жыл бұрын
I'm sure we all figured this out as kids when we wondered which two numbers, that add up to the same sum, would make the biggest rectangle. the longer the rectangle becomes, the smaller the area, and a square is the most efficient rectangle in this way.
@enderallygolem
@enderallygolem 3 жыл бұрын
The longer the rectangle the smaller the area I know what you mean but L
@idk54756
@idk54756 Ай бұрын
this is a generalization of said property to the 99th dimension
@mrflibble5717
@mrflibble5717 2 жыл бұрын
Thanks Michael for the Videos. Your clarity of explanation, and detail in the solutions is the best I’ve seen.
@alpotato6531
@alpotato6531 11 ай бұрын
I really enjoyed working through this with the video
@shivansh668
@shivansh668 3 жыл бұрын
Thanks PROF. I LOVE YOUR TEACHING AND BECAUSE OF YOU I'M LOVING OLYMPIAD MATH GOOD JOB KEEP IT UP ! 💯K
@spacescopex
@spacescopex 2 жыл бұрын
MY SOLUTIONS: kzbin.info/www/bejne/i6uwqomOiJWLg8k kzbin.info/www/bejne/eJnXaohrn5xpnLs
@rosebuster
@rosebuster 3 жыл бұрын
I thought the third method was only called "cheating" as sort of an expression to say it's figured out by doing some dirty tricks, like making some sort of a guess we couldn't possibly know and then proving it, but no... It's literally cheating. I didn't see that coming!
@spacescopex
@spacescopex 2 жыл бұрын
MY SOLUTIONS: kzbin.info/www/bejne/i6uwqomOiJWLg8k kzbin.info/www/bejne/eJnXaohrn5xpnLs
@joetursi9573
@joetursi9573 8 ай бұрын
Great work Michael!!
@dproduzioni
@dproduzioni 3 жыл бұрын
I'm so glad I found your channel! Plz keep up the good work!
@hach1koko
@hach1koko 3 жыл бұрын
A 4th way of doing it : the AM-GM inequality yields ((50+k+50-k)/2))^2=50^2>=(50+k)(50-k) so taking the product over the k's between 0 and 49 we get 50^100>=50*99! hence the result Edit : or (50+k)(50-k)=50^2-k^2
@joshuamason2227
@joshuamason2227 3 жыл бұрын
Genius!
@think_logically_
@think_logically_ 3 жыл бұрын
This is effectively the first method, only you proved the inequality, while I didn't notice the proof in the video. I did in less fashionate way, Consider trinomial x²-99x+2500 Since D=99²-10000=99²-100²0 for any x. In particular, k(99-k) n! (second method), from ((n+1)/2+k)((n+1)/2-k) < ((n+1)/2)². I believe this is simpler than by induction.
@spacescopex
@spacescopex 2 жыл бұрын
Better method: kzbin.info/www/bejne/gZrNp4l8dtprjas (2 topics included)
@shivansh668
@shivansh668 3 жыл бұрын
One of the best ending ever on this channel , I loved it 🤩❤️
@spacescopex
@spacescopex 2 жыл бұрын
MY SOLUTIONS: kzbin.info/www/bejne/i6uwqomOiJWLg8k kzbin.info/www/bejne/eJnXaohrn5xpnLs
@Guilherme-xp1tv
@Guilherme-xp1tv 3 жыл бұрын
Thank you, Mr. Penn, very cool!
@armenhayrapetian755
@armenhayrapetian755 Жыл бұрын
Thanks for another great video!
@graysonking16
@graysonking16 2 жыл бұрын
Pre-watch guess: 50^99 Reasoning: both have 99 terms. I know that usually the central term multiplied with itself is bigger than outside numbers multiplied with each other. We'll see if it holds up.
@luislaracuente
@luislaracuente Жыл бұрын
That was my logic too.
@luizgilbertooliveiramessia2217
@luizgilbertooliveiramessia2217 3 жыл бұрын
The "cheating way" was the best, I laughed a lot
@spacescopex
@spacescopex 2 жыл бұрын
MY SOLUTIONS: kzbin.info/www/bejne/i6uwqomOiJWLg8k kzbin.info/www/bejne/eJnXaohrn5xpnLs
@mercedes932
@mercedes932 2 жыл бұрын
For the second method you can just used AM-GM and sub in 1, 2, 3…n and it comes out straight away
@smileforworldmotivationcha7144
@smileforworldmotivationcha7144 2 жыл бұрын
You always work the devine problems of Math with clear and calm solution. I really need helps from teacher like you. Noone of my teachers have ever taught me as how you teach here. Warm regard from Indonesia.
@guilhermemartins8262
@guilhermemartins8262 3 жыл бұрын
Nice video, as always, but I think that in the simple solution, when you talked about the "denominators increasing but being less than 50^2", you could, instead, just say that those pairs in the denominator are of the form (50-k)(50+k)=50^2-k^2, which is less than 50^2 for every k between 1 and 49 (both included). This way you don't need to explain why the denominators are increasing or even calculate the values of 50^2 and 49x51.
@spacescopex
@spacescopex 2 жыл бұрын
MY SOLUTIONS: kzbin.info/www/bejne/i6uwqomOiJWLg8k kzbin.info/www/bejne/eJnXaohrn5xpnLs
@normalitee0os
@normalitee0os 3 жыл бұрын
4th way : MULTIPLY BOTH SIDE BY ZEROES. And Tadaaaa You Get Equality.
@justanub4697
@justanub4697 3 жыл бұрын
It doesn't work like that tho I mean it's a good joke, maybe
@idk54756
@idk54756 Ай бұрын
😂
@parshvpatel9644
@parshvpatel9644 2 жыл бұрын
Thanks for the video sir! 👍🏻
@Ahmad-vi8xb
@Ahmad-vi8xb 3 жыл бұрын
Forth way: Use log10 (This can be helpful for very large numbers or powers) Let the symbols be: (n^x, x!) Your program should be: double a = 0.0, b = 0.0; for(int i=0; i
@goguhu
@goguhu 3 жыл бұрын
I went straight to thinking about area ... where we know the largest area (multiplication of the two sides) for a given circumference is when the sides are equal. So we know that n^2 > (n-k)*(n+k) for any k {1,n-1}
@anonymous_4276
@anonymous_4276 3 жыл бұрын
Excellent! So you basically maximized the volume of a 99-dimensional cube given the sum of the lengths of it's sides is constant. I guess this can also be used to show the general case of ((n+1)/2)^n>n!
@adityamohan7366
@adityamohan7366 3 жыл бұрын
I initially thought this was an overkill video. Missing your overkill vids.
@muthumanickammathiarasu1183
@muthumanickammathiarasu1183 3 жыл бұрын
Just what I was looking for, encountered a similar problem today . Thank you
@diegograjales5356
@diegograjales5356 Жыл бұрын
Excelent explanation Prof. Penn. I admire You and I always follow You. Thank you.
@DANGJOS
@DANGJOS 3 жыл бұрын
Another way to think about it is that (x+n)(x-n) is always smaller than x^2 for any integer 'n' that isn't 0. Basically, having 99 of the same number multiplied together must be larger than an equivalent number of different numbers multiplied together. If you did (50^97)×(51)(49), it would also be smaller than 50^99, for the same reason.
@lithium191
@lithium191 3 жыл бұрын
1:44 "Notice 49 + 49 is 98, plus one is 50" Too many 50s to keep track of, I suspect
@david_ga8490
@david_ga8490 3 жыл бұрын
XD
@merlinrainbow2804
@merlinrainbow2804 3 жыл бұрын
I felt like I was so good at maths when I heard this
@antoinematt2115
@antoinematt2115 3 жыл бұрын
You are amazing with math!!! Congratulations from Mexico
@user-ij2gl6sf2q
@user-ij2gl6sf2q 3 жыл бұрын
Such an amazing way to easily sovle the problem.
@JJCUBER
@JJCUBER 3 жыл бұрын
1:44 49+49=98, 98+1=50 🤔😉
@darkshoxx
@darkshoxx 3 жыл бұрын
Isn't it easier to use (n+k)*(n-k) =n^2-k^2
@DavidSmyth666
@DavidSmyth666 3 жыл бұрын
Nice observation. This way you don’t need to do the whole induction proof
@DylanNelsonSA
@DylanNelsonSA 3 жыл бұрын
Isn't this essentially the first way that he showed us?
@darkshoxx
@darkshoxx 3 жыл бұрын
@@DylanNelsonSA yeah, with proof by example, very hand-wavy
@Ras-kr5nw
@Ras-kr5nw 3 жыл бұрын
Hey, I really enjoy and like your video's! I was just looking on the internet what you do and found your website and I really loved your statement there "giving introverted student the opportunity to speak up and contribute.."! I never had such a teacher but I think that's a very important pro every teacher should have!
@maharanirani54
@maharanirani54 3 жыл бұрын
What is the website?
@varunrmallya5369
@varunrmallya5369 3 жыл бұрын
3:00 love how he says davaide
@boborulllz
@boborulllz 3 жыл бұрын
4th way: inequality of means. Take the 99th root of both terms. The result for 50^99 is just 50. For 99!, you write that the geometric mean is strictly less than the arithmetic mean which is (1+2+3+...+99)/99 = 50. Therefore, 99th root of 99! is less than 99th root of 50^99, so once you raise everything to power 99, you get that 99! < 50^99.
@aiseop31415
@aiseop31415 3 жыл бұрын
Your subscribers have grown rapidly When i subscribed you, you were at 36 k
@goodplacetostop2973
@goodplacetostop2973 3 жыл бұрын
Michael will reach the 100K subs in December. I’d love to see him with the silver button from YT.
@user-rp6yq5rw3r
@user-rp6yq5rw3r 11 ай бұрын
This man deserves more support
@taiyoshoe
@taiyoshoe 2 жыл бұрын
Fun problem! The first thing I thought of was to use the concavity of log. Which is very simple and also implies the AM-GM inequality and proves a pretty general version of this result.
@omerhybloom557
@omerhybloom557 3 жыл бұрын
Me at 3 am need to sleep when there is school tomorrow: Let's watch this cause why not
@nickcampbell3812
@nickcampbell3812 3 жыл бұрын
1:44 "49 + 49 is 98, +1 is 50"
@matthewlockard6599
@matthewlockard6599 3 жыл бұрын
Referring to the 50 in the middle
@nickcampbell3812
@nickcampbell3812 3 жыл бұрын
@@matthewlockard6599 I know, I'm just teasing.
@parsanoori8217
@parsanoori8217 2 жыл бұрын
I'm in love with the third method.
@JNCressey
@JNCressey 3 жыл бұрын
Instead of induction, it's also simple to apply the first method to a general case. With the pairing off of m^2/((m-d)(m+d)) terms all being less than 1. where midpoint m=(n+1)/2, and differences d are in a range starting at 1 for odd n, or 0.5 for even n, with step size 1, and ending at m-1. You can easily see m^2>(m-d)(m+d) by geometry or by difference of two squares: (m-d)(m+d)=m^2-d^2.
@dewangsingla1789
@dewangsingla1789 3 жыл бұрын
I actually solved this question with the simple method as we know that for every positive integer x, x² is greater than (x+y)(x-y) where y is any positive integer.
@BlacksmithTWD
@BlacksmithTWD 3 жыл бұрын
Except when y = 0 of course. we can even tell how much greater/more using the formula: x^2 = (x+y) (x-y) + y^2 Don't these rules apply to negative integers for x as well? (-2)^2 > (-2+1) (-2 - 1) at least as long as x and y are both elements of Z it seems to work.
@petrospatrianakos9166
@petrospatrianakos9166 3 жыл бұрын
x^2 > (x+y)(x-y) because 0 > -y^2 (for y not equal to 0) x^2 > x^2 - y^2 x^2 > (x - y)(x + y). It applies for every x,y belonging to r, there are no restrictions except from y must not equal to 0, like Blacksmith said
@BlacksmithTWD
@BlacksmithTWD 3 жыл бұрын
@@petrospatrianakos9166 I take it you meant -y^2>0 (for y not equal to 0), or did you mean 0 > -(y^2) for any y not equal to 0? (notation methods tend to change over the years and my way may have been outdated by now :) though if one exchanges the > symbolfor a >= symbol (not sure how to type greater than or equal to symbol on a qwerty keyboard), then even y = 0 works. since if y = 0 then (x+y) (x-y) = x^2 so then it boils down to x^2 >= x^2 which is correct. any real number not equal to 0 for y gives an y^2 > 0 in the formula x^2 = (x+y) (x-y) + y^2 any real number for y gives an y^2 >= 0
@petrospatrianakos9166
@petrospatrianakos9166 3 жыл бұрын
@@BlacksmithTWD -y^2 is smaller or equal to 0, since any number squared is a non-negative number (not sure how it is called in english), and since it has a minus in front of it, it is a non-positive number (negative or 0). So you can either say 0 > -y^2 x^2 > x^2 - y^2 x^2 > (x - y)(x + y) (for y not equal to 0) or say 0 >= -y^2 x^2 >= x^2 - y^2 x^2 >= (x - y)(x + y) for every y, and the equality is true when y=0.
@petrospatrianakos9166
@petrospatrianakos9166 3 жыл бұрын
But x and y can be any number, not just a positive integer and y is not necessarily smaller than x like the original comment suggested.
@alexwu358
@alexwu358 3 жыл бұрын
Me after failing honor precalc test: Im gonna study hard for next test Also me at mid night: 50^99 or 99! well let's figure it out
@skrimmtv3891
@skrimmtv3891 3 жыл бұрын
Bruh same i have 81 rn
@user-mj2dv4vw6j
@user-mj2dv4vw6j 3 жыл бұрын
For general solution, you can also take the natural log of each hand and use the Jensen inequality for natural log of x.
@rainerbuechse6923
@rainerbuechse6923 2 жыл бұрын
Agree!
@user-vv4zy9ss5s
@user-vv4zy9ss5s 3 жыл бұрын
I thought the cheating way is to compare 2^3 and 3! 😂
@FairArc
@FairArc 3 жыл бұрын
Uh
@hasndsome
@hasndsome 3 жыл бұрын
But you have to prove the method 2 first to ensure that it works in this case.
@BlacksmithTWD
@BlacksmithTWD 3 жыл бұрын
I wouldn't call that method cheating. Especially if you also compared 4^5 with 5!, 6^7 with 7!, 8^9 with 9! and pointed out the emerging pattern to derrive the conclusion that 50^99 > 99!.
@user-vv4zy9ss5s
@user-vv4zy9ss5s 3 жыл бұрын
@@BlacksmithTWD I think is to compare 3^5 with 5! , 4^7 with 7! , 5^9 and 9! It can be easily understood by the equation (x+y)(x-y)=x^2-y^2 less than x^2. For example, 99×1
@BlacksmithTWD
@BlacksmithTWD 3 жыл бұрын
@@user-vv4zy9ss5s My bad, I was too hasty, the comparisons are when considering in an even number n as follows : n^(2n-1) with (2n-1)! so that would give us 2^3 with 3!, 4^7 with 7!, 6^11 with 11! etc.
@dhanvin4444
@dhanvin4444 3 жыл бұрын
I started panicking when I saw there was hardly a minute for the video to end and he didn’t start to explain the cheating method.
@tanvisorout1217
@tanvisorout1217 3 жыл бұрын
Nice one xp
@renatop5661
@renatop5661 3 жыл бұрын
I subscribed because of this video. Great, man!
@lePirateMan
@lePirateMan 2 жыл бұрын
I didn't notice the factorial sign at first and thought you were comparing 50^99 to 99
@andreamarino95
@andreamarino95 3 жыл бұрын
There is another approach for the general case: use AM-GM inequality. (99!) ^(1/99) < (1+.. +99) /99 = 50 Watch out: the inequality is strict because involved numbers are different!
@eituottavuutta9034
@eituottavuutta9034 3 жыл бұрын
I honestly thought, that for the "cheating" way he'd just take out his calculator
@SadisticNiles
@SadisticNiles 3 жыл бұрын
The calculator gives up for factorials bigger than 69!
@apolloniuspergus9295
@apolloniuspergus9295 3 жыл бұрын
Mine goes up to 170!
@ZipplyZane
@ZipplyZane 3 жыл бұрын
@@SadisticNiles It all depends on what the maximum value your calculator can hold. The difference is large enough that any rounding is irrelevant.
@SadisticNiles
@SadisticNiles 3 жыл бұрын
@@ZipplyZane true, but I would guess that for most standard calculators that limit is e100.
@ZipplyZane
@ZipplyZane 3 жыл бұрын
@@SadisticNiles Yeah. I was actually thinking of the graphing calculator I used in math classes. I don't remember where it maxed out, but it was over e100. It wouldn't surprise me if it just used 64-bit floats, which max out around e300.
@pascaldelcombel7564
@pascaldelcombel7564 3 жыл бұрын
Brillant final!
@chandanhans5116
@chandanhans5116 3 жыл бұрын
Last method is my favorite
@HeyRandal
@HeyRandal 3 жыл бұрын
This is funny, my wife asked me the same question a few days ago! Fun video, thanks Michael. I think the simple explanation should be simpler. I answered the question in my head by thinking 9 * 11 < 100, done! That implies that 49*51
@spacescopex
@spacescopex 2 жыл бұрын
Better method: kzbin.info/www/bejne/gZrNp4l8dtprjas (2 topics included) That is what I am saying.
@mangai3599
@mangai3599 3 жыл бұрын
Well, just for a joke, when I saw "cheating" for a 2 or 3 seconds I thought " proffessor will assume any one hypothesis is true and then he will proof that the assumption is true!"😂😂
@stephomn
@stephomn 3 жыл бұрын
Professor Penn, do you have or are you planning to do a series on Lp spaces? And finally I enjoyed this video keep up the good work
@mahmoudalbahar1641
@mahmoudalbahar1641 3 жыл бұрын
Many thanks for this very good video.
@uhbayhue
@uhbayhue 3 жыл бұрын
This is a quick numerical way someone could do on their calculator: Take ln() of both sides, so we have 99*ln(50) and ln(99*98*...*2*1) = Sum from k=0 to k=99 of ln(k). This way, one could raise both sides to the power of e after computing numerical values and tell by how much one side is greater than the other! :)
@elchingon12346
@elchingon12346 3 жыл бұрын
I love induction because it’s like answering “Why is this true?” with “Because math says so”
@Joefrenomics
@Joefrenomics 2 жыл бұрын
… You’re just showing the previous case implies the current case. Nothing fancy.
@kushalthaman3110
@kushalthaman3110 2 жыл бұрын
For a fourth method for comparing x=((n+1)/2)^n and y=n! we can calculate ln(x) and ln(y) where the latter is approximated using Stirling's approximation to O(ln(n))
@sadeekmuhammadryan4894
@sadeekmuhammadryan4894 2 жыл бұрын
A great video indeed 😁 Thanks ❤️
@timewalker6654
@timewalker6654 3 жыл бұрын
Thats the kind of question we get in JEE where we don't even have enough time .
@shresthshukla6239
@shresthshukla6239 3 жыл бұрын
we dont get these😂😉😉🙂
@princejangra1231
@princejangra1231 3 жыл бұрын
Just posting a comment before it hits again in everyone's recommendation
@cernejr
@cernejr 3 жыл бұрын
Hi Michael, fun video! As a former physicist/applied-mathematician I like to see the actual numbers to get a feel for them. So your "cheat" method today was most welcome.
@ThwennTheOwner
@ThwennTheOwner 3 жыл бұрын
It is even simpler to show, that (a-1)*a*(a+1) = a^3 - a < a^3, or more generell (a-b)*a*(a+b) = a^3 - b^2*a < a^3 ( for a > 0). ==> 49*50*51 < 50*50*50, 48*49*50*51*52 < 50^5 and so on
@MrNoob_11
@MrNoob_11 3 жыл бұрын
This probably falls under cheating as well, but it got me the answer. The geometric mean of ninety-nine 50's is easy to calculate, it's 50. The geometric mean of the integers 1 through 99 is less than its arithmetic mean and is therefore less than 50. Since both terms can be rewritten as (geometric mean)^99, 50^99 must be bigger since it has the larger geometric mean.
@Merlin1908
@Merlin1908 3 жыл бұрын
Definitely isn’t cheating. It’s using AM-GM smartly to prove the general case in a more insightful way than the induction.
@spacescopex
@spacescopex 2 жыл бұрын
Better method: kzbin.info/www/bejne/gZrNp4l8dtprjas (2 topics included)
@filipe_paixao
@filipe_paixao 3 жыл бұрын
huuunm [ (50-n)*(50+n)=50² - n² ] 50² > 50² - n²
@RS-do2rb
@RS-do2rb 3 жыл бұрын
Me too
@s.h5187
@s.h5187 2 жыл бұрын
Great lecture! I could understand both intuitively and strictly.
@spacescopex
@spacescopex 2 жыл бұрын
七地さん? MY SOLUTIONS: kzbin.info/www/bejne/i6uwqomOiJWLg8k kzbin.info/www/bejne/eJnXaohrn5xpnLs
@flux4162
@flux4162 3 жыл бұрын
Love from the UK 👍, I know they're not really your 'style' of problem but MAT is an exam for students in the uk for university entrance maybe you could do one of those problems (some of my faves are 2019 q5, 2018 q4, 2017 q5) like this so Michael sees !!! Love the content
@pietrodicello6731
@pietrodicello6731 3 жыл бұрын
1:48 :"Notice 49+49=98+1=50" ExCuSe Me WtF?!! 😂😂
@matthewlockard6599
@matthewlockard6599 3 жыл бұрын
Referring to the 50 in the middle, the 98th exponent + 1 is 50.
@iooooooo1
@iooooooo1 3 жыл бұрын
For the 'cheating' way, I thought you were going to apply the Stirling approximation for n!. Even though it is 'only' an approximation there are bounds on the error term in the approximation that I'd expect to be able to use to turn the argument into a rigorous proof. Haven't actually worked this out on paper.
@JakkuSakura
@JakkuSakura 3 жыл бұрын
I believe that MMA has magic to deal with precision
@xanschneider
@xanschneider 2 жыл бұрын
I just looked at the 1 in the 99! and figured it had to be smaller. Took me like a second.
@gambini5777
@gambini5777 Жыл бұрын
for really large numbers one could also use Stirlings formula
@PaulOlt1
@PaulOlt1 3 жыл бұрын
The simple method is actually obvious. Why the complicated "general" method? Basically every term over there is 50*50/(50 - x)(50 + x) which is 50^2/(50^2 - x^2) which is always >= 1. QED
@McGliga
@McGliga 2 жыл бұрын
My way was faster, easier and just as reliable! I basically went "idk 50^99 just feels bigger" and, clearly, I was right
@TheDelcin
@TheDelcin 3 жыл бұрын
Integer overflow
@KOPLuffy
@KOPLuffy 3 жыл бұрын
Used to pay college tution for this! Now its free, amazing
@npicard
@npicard 3 жыл бұрын
"98 + 1 is 50" Hmmm, is it?
@WindowsXP_YT
@WindowsXP_YT 3 жыл бұрын
50^99 > 99!
@mahdivakili7353
@mahdivakili7353 3 жыл бұрын
amazing. thanks
@rafael9285
@rafael9285 2 жыл бұрын
The best Channel of youtube.
Swedish Mathematics Olympiad | 2002 Question 4
14:19
Michael Penn
Рет қаралды 309 М.
Half of a deathly area...
15:44
Michael Penn
Рет қаралды 1,4 МЛН
🌊Насколько Глубокий Океан ? #shorts
00:42
Vivaan  Tanya once again pranked Papa 🤣😇🤣
00:10
seema lamba
Рет қаралды 20 МЛН
Stupid Barry Find Mellstroy in Escape From Prison Challenge
00:29
Garri Creative
Рет қаралды 21 МЛН
The strange cousin of the complex numbers -- the dual numbers.
19:14
Can you trust an elegant conjecture?
15:35
Stand-up Maths
Рет қаралды 323 М.
are you tired of the a^b vs b^a questions?
12:42
blackpenredpen
Рет қаралды 922 М.
I Played Fabiano Caruana
12:03
Anna Cramling
Рет қаралды 100 М.
Can you solve this Oxford admissions question?
8:18
MindYourDecisions
Рет қаралды 142 М.
All the Numbers - Numberphile
14:27
Numberphile
Рет қаралды 1,6 МЛН
A very interesting differential equation.
16:28
Michael Penn
Рет қаралды 953 М.
Why do calculators get this wrong? (We don't know!)
12:19
Stand-up Maths
Рет қаралды 2,1 МЛН
What is the factorial of -½?
12:46
Stand-up Maths
Рет қаралды 565 М.
Mathematicians vs. Physics Classes be like...
7:55
Flammable Maths
Рет қаралды 2,9 МЛН
🌊Насколько Глубокий Океан ? #shorts
00:42