Word2Vec : Natural Language Processing

  Рет қаралды 39,956

ritvikmath

ritvikmath

Күн бұрын

Пікірлер: 78
@revathik9225
@revathik9225 9 ай бұрын
Great video. One thing to add: instead of always discarding the context vectors at the end, another strategy (mentioned in other videos/articles) is to concatenate or add the two vectors for a word.
@matthewson8917
@matthewson8917 3 жыл бұрын
Finally, someone made a clear and concise introduction for Word2Vec! I admire you!
@hahahaYL-h3x
@hahahaYL-h3x 7 ай бұрын
You are a genius! You are able to explain abstract things well with only white board (no animation!)
@DC-tq1kh
@DC-tq1kh 8 ай бұрын
Probably the best video explanation I watched. thank you.
@DennisRice-lh3nd
@DennisRice-lh3nd Жыл бұрын
The best and most concise explanation of Word2Vec that I've seen so far. I probably need to go back and review gradient descent again, because updating the weights is still confusing.
@drsandeepvm5622
@drsandeepvm5622 2 жыл бұрын
Exceptionally simplified explanation. Thanks 😊
@sefinehtesfa5189
@sefinehtesfa5189 2 жыл бұрын
I appreciate your explanations. I was stuck on Word2Vec. However, you explainde this more than enough. Thank you so much!!!
@jett_royce
@jett_royce 3 жыл бұрын
Great video. You mentioned that we discard the context vectors and take the main vectors as our final word embeddings. I just want to add that based on the literature, you can also add the main and context vectors, or concatenate them.
@yangwang9688
@yangwang9688 3 жыл бұрын
Great explanation, it’s pure gold! Can you make a video in terms of hierarchical softmax? It confuses me for a long time.
@a00954926
@a00954926 3 жыл бұрын
This is amazing!! I remember trying to understand this back when it was first published, and i failed so hard...thank you
@saikatroy3818
@saikatroy3818 3 жыл бұрын
Explained in lucid manner. Nice video.
@nobodyelse2230
@nobodyelse2230 2 жыл бұрын
You're so good! Thank you very much for this explanation, my minds are so slear after it, magic!
@Recoils14
@Recoils14 Жыл бұрын
This explanation is so well done! Thank you!
@ritvikmath
@ritvikmath Жыл бұрын
Glad it was helpful!
@junekang2364
@junekang2364 10 ай бұрын
Great video! Thank you for explaining this so clear.
@vctorroferz
@vctorroferz 5 ай бұрын
Incredible and amazing explanation! Thanks so much for such great content!
@ritvikmath
@ritvikmath 5 ай бұрын
Glad you liked it!
@purpleearth
@purpleearth 7 ай бұрын
This is a superb explanation
@SonalGore-q1v
@SonalGore-q1v 8 ай бұрын
Cool....Made it very easy for me to understand about word2vec. Great explanation !!
@ritvikmath
@ritvikmath 8 ай бұрын
Glad it helped!
@utuber1752
@utuber1752 Жыл бұрын
EXCELLENT explanation!
@ebujak1
@ebujak1 Жыл бұрын
Great Word2Vec video. Nice touch with blue for Main and red for Context. Working an example with numbers is also very good. Can we please have a follow up video (from ritvik "from the future" :) ) to do the UPDATE part of the loop? We know there are multiple ways to do this UPDATE, but just expound on the "simple" method of moving the vectors as you illustrated in 2D. Thanks.
@mmenjic
@mmenjic 3 жыл бұрын
And how do we distinguish between 2 same words in this case "data" if we have larger text where data is next to science but it is also close to other word or words for example data processing, data mining, data validation, data.... data..... everything, is it the case that word data is "closer" to word science in general than it is to word processing or there is some other mechanism for this ?
@HiteshKumar-bk2od
@HiteshKumar-bk2od 3 жыл бұрын
Can you please make a video on transformers, attention and Bert models in detail . It will be in Continuation with word vectors.
@harshalingutla7318
@harshalingutla7318 2 жыл бұрын
Brilliant explanation. To the point.
@dominicprior9844
@dominicprior9844 Жыл бұрын
Wow, such a nice clear video! Many thanks!
@bharathtvadhoola715
@bharathtvadhoola715 2 жыл бұрын
Awesome video! numerical example was particularly helpful. Cheers :)
@arshadkazi4559
@arshadkazi4559 2 жыл бұрын
Could you elaborate more on context and main embedding please? 6:00
@limkangwei6339
@limkangwei6339 Ай бұрын
This is fascinating!!! Question: How do we get the initial vectors before even starting the for loop?
@austossen
@austossen 3 жыл бұрын
this is by far the best explanation of word2vec on youtube over any university lecture but one question. where and how are you getting your initial vector values in this example for V(like) and V(data)? can you also clarify the components of the vector? you have two columns/elements for each vector in the main vector and context vector.
@tellyrotsyourbrain
@tellyrotsyourbrain 2 жыл бұрын
Exactly what I was wondering. Where do the initialisations of these vectors come from? I'm guessing they're initialised randomly, with the algorithm evolving the distribution into something that relates to the training data.
@MikeKittelberger
@MikeKittelberger 10 ай бұрын
Awesome explanation, you safe me a lot of time. Thank you! :)
@Halo-uz9nd
@Halo-uz9nd 3 жыл бұрын
Another fantastic video! The main/context embeddings kind of confused me but the ending really cleared it up. Curious to know if there is a deliberate way of choosing # of dimensions or if its simply trial and error. On a side note, will you be participating in the "66 days of data" challenge this July?
@testimonies2914
@testimonies2914 3 жыл бұрын
Nice ...thannk you so much
@FullStackAmigo
@FullStackAmigo Жыл бұрын
I learned something, thanks a lot!
@jagadeeshwaran1512
@jagadeeshwaran1512 6 ай бұрын
How does the Main embedding is calculated?. How is the vector defined?
@michaelm358
@michaelm358 Жыл бұрын
Outsanding!
@hameddadgour
@hameddadgour 2 жыл бұрын
Great presentation!
@muhammadal-qurishi7110
@muhammadal-qurishi7110 3 жыл бұрын
You are always great in your explanations Can you explain CRF please
@priyasah6123
@priyasah6123 10 ай бұрын
How to calculate score ? We need to take dot product of what exactly with main and context ?
@pampagrimaldi8584
@pampagrimaldi8584 Жыл бұрын
great explanation! thank you!
@ritvikmath
@ritvikmath Жыл бұрын
Glad it was helpful!
@nobodyelse2230
@nobodyelse2230 2 жыл бұрын
Hello again! After a couple of days of studying another materials, I realized that I don't understand where the formulas for the score and the error come from, I don't see them in the books I read (and I haven't seen this approach with labels yet either). Are there any papers or books where I can find them and the prove that they work?
@lsacy8347
@lsacy8347 2 жыл бұрын
why is this word2vec so different from "conventional" word2vec where you use a neural network and bag of words to calculate the weights matrix? ok, my bad, just realized you talked about neural network update method towards the end.
@zhiyili6707
@zhiyili6707 2 жыл бұрын
Thank you for the video! Great content!
@oraz.
@oraz. 2 жыл бұрын
What determines the dimension of the word vectors? Edit I guess it's just an engineering decision.
@agamchug595
@agamchug595 2 жыл бұрын
How is the initial size of the vectors determined? As you mentioned that traditionally there may be vectors with 50 dimensions and your example has used 2 to ease understanding.
@golnoushghiasi7698
@golnoushghiasi7698 2 жыл бұрын
Can you explain some more NLP models such as Bert, Fasttext and transformers?
@kostjamarschke4613
@kostjamarschke4613 2 жыл бұрын
Phenomenal stuff!
@kostjamarschke4613
@kostjamarschke4613 2 жыл бұрын
Honestly phenomenal. You covered 80% of a 90-minute Masters-level ML lecture in 13 minutes and made it very easy to understand.
@gabrielemoro304
@gabrielemoro304 6 ай бұрын
the dot product between V_like and V_data should be 0.4 and not 0.6 right? (min 8:27)
@KD4wg
@KD4wg 6 ай бұрын
yes, the dot product is 0.4. But our score is the sigmoid of the dot product. And sigmoid(0.4) is roughly 0.598 ^^
@gnkk6002
@gnkk6002 2 жыл бұрын
Good job as always👏
@vincentouwendijk3746
@vincentouwendijk3746 8 ай бұрын
Great video!
@ritvikmath
@ritvikmath 8 ай бұрын
Glad you enjoyed it
@bartoszko4028
@bartoszko4028 Жыл бұрын
Well explained, but doesn't sigmoid function give values from 0 to 1? Then maybe it should be tanh activation function?
@ebujak1
@ebujak1 Жыл бұрын
Score needs to be positive since the error needs to be opposite (error = label - score). tanh is negative and positive ... so hard to interpret error.
@bilalsidiqi9992
@bilalsidiqi9992 2 жыл бұрын
Could you please implement some NLP models in pytorch or tensorflow?
@edphi
@edphi Жыл бұрын
Very awesome
@CarlJohnson-jj9ic
@CarlJohnson-jj9ic Жыл бұрын
Is chloroform FDA approved for a mechanics lean on a judgement?
@houyao2147
@houyao2147 3 жыл бұрын
very intuitive!
@mosca-tse-tse
@mosca-tse-tse 3 жыл бұрын
So how does it happen than king - man + woman = queen, a very common selling example of wod2vec?
@muhammadal-qurishi7110
@muhammadal-qurishi7110 3 жыл бұрын
check this video and you will have clear understanding kzbin.info/www/bejne/al60oICaiNZ6las
@mosca-tse-tse
@mosca-tse-tse 3 жыл бұрын
@@muhammadal-qurishi7110 cool 👍🏻 thanks!
@VincentVanZgegh
@VincentVanZgegh Жыл бұрын
Great video ! Thx
@ritvikmath
@ritvikmath Жыл бұрын
Glad you liked it!
@moatasem444
@moatasem444 Жыл бұрын
There is a prepared embedding?
@kundansaha4877
@kundansaha4877 2 жыл бұрын
please make a video how spacy works
@sa-vx5vi
@sa-vx5vi 2 жыл бұрын
Thanks a lot
@0815-j3s
@0815-j3s 7 ай бұрын
Simply since the distances are invariant under orthogonal transformations of the space "embeddings" (by the way: Not in the mathematical sense) are not unique. But they also depend on the prupose of the model.
@sachinrathi7814
@sachinrathi7814 2 жыл бұрын
Can someone will explain where those 2 numeric values (vector representation) for like word, -.2 and -1 comes from ? Word2vec is used to create numeric representation of words in vector form or create vector in such a way that word which are close in documents are also close in vectors representation as well ?
@goumuk
@goumuk 2 жыл бұрын
initially the values are randomly set. after each iteration of computation, the values keep getting updated.
@vyvu443
@vyvu443 8 ай бұрын
Ritvik... can you do NLP, word embeddings with GloVe and FastText :D :D :D Thank you in advance!
@kevinscaria
@kevinscaria Жыл бұрын
Wow
@RonLWilson
@RonLWilson 2 жыл бұрын
Just FYI, I just made and uploaded a KZbin video where I used bits of your video here as a use case to illustrate a graphical ontology language that I am calling UniML, Universal Modeling L (not to be confused with UML, Unified modeling Language). While things like neural nets map transformation or functions (f: X -> Y) UniML attempts to model more than that and model the thing itself, including any such transformations as an ontology model but not using just symbols such as does ontology languages such as OWL or RDF but graphically so that graphically depicts the under lying data structures. Here is a link to my video kzbin.info/www/bejne/mJrSq2Voa6iWjbs
@gagangayari5981
@gagangayari5981 2 жыл бұрын
Perfect explanation. How would doc2vec fit along the same lines with the algorithm you mentioned ? Can you please briefly tell ? @ritvikmath
@shakeelm5339
@shakeelm5339 10 ай бұрын
I have no clue what the heck he talked about.
Coding Word2Vec : Natural Language Processing
7:59
ritvikmath
Рет қаралды 24 М.
The Viterbi Algorithm : Natural Language Processing
21:13
ritvikmath
Рет қаралды 110 М.
Long Nails 💅🏻 #shorts
00:50
Mr DegrEE
Рет қаралды 14 МЛН
I thought one thing and the truth is something else 😂
00:34
عائلة ابو رعد Abo Raad family
Рет қаралды 6 МЛН
How to Fight a Gross Man 😡
00:19
Alan Chikin Chow
Рет қаралды 12 МЛН
Vectoring Words (Word Embeddings) - Computerphile
16:56
Computerphile
Рет қаралды 297 М.
A Complete Overview of Word Embeddings
17:17
AssemblyAI
Рет қаралды 113 М.
Word2Vec Easily Explained- Data Science
22:50
Krish Naik
Рет қаралды 172 М.
Understanding Word2Vec
17:52
Jordan Boyd-Graber
Рет қаралды 78 М.
What is Word2Vec?  How does it work? CBOW and Skip-gram
19:27
Kris Ghimire
Рет қаралды 33 М.
Recurrent Neural Networks : Data Science Concepts
27:17
ritvikmath
Рет қаралды 31 М.
The SECRET to Perfect Mandarin Tone Pronunciation 🇨🇳
13:19
Julesytooshoes
Рет қаралды 5 М.
How to STUDY so FAST it feels like CHEATING
8:03
The Angry Explainer
Рет қаралды 1,8 МЛН