This presentation is the best overall view on the most important XGBoost model parameters I have seen.
@DataMites2 жыл бұрын
Thank You
@wanneesalkhayyali8386 Жыл бұрын
Indeed!
@kmnm94634 жыл бұрын
Hi Ashok, What I think is, there is no need to check for training accuracy. This is a redundant approach. The reason is the model is trained on the training data. So obviously the accuracy, whatever the hyperparameter tuning we do, is more likely to be close to 1.0. The better approach is to just focus on the test data. In real time scenario , for a problem statement, we would be feeding unseen data to the model and then fine - tune the hyper parameter. Thanks for the tutorial. Thanks from KM
@DataMites3 жыл бұрын
Thank you
@darrencr1987 Жыл бұрын
Just for discussion… I think the purpose for calculating training performance is to compare it with test performance and see if there is any overfitting, otherwise how would you know ? Also I don’t think accuracy is a good measure here, AUC might be a better one, just my 2 cents
@prakharbaheti40554 жыл бұрын
Great tutorial , exact and to the point.
@DataMites4 жыл бұрын
Thank you!
@satishb9975 Жыл бұрын
Thank you and excellent way with detailed elaboration, of each parameters for Hyper parameter tuning) explained very well, finally in got the topic of hyper parameter tuning concept
@DataMites Жыл бұрын
Thank you, Keep Supporting
@dehumanizer6683 жыл бұрын
Nice one 👍🏼
@DataMites3 жыл бұрын
Thanks
@sugandhchauhan19002 жыл бұрын
Great video. Could you help me fine-tune my model, please? I am getting really low training and testing accuracy?
@DataMites2 жыл бұрын
How can I help you?
@sugandhchauhan19002 жыл бұрын
@@DataMites I have messaged you on LinkedIn 😊
@carolinnerabbi9654 жыл бұрын
Very good explanation and test strategy, thanks!
@DataMites4 жыл бұрын
Glad it was helpful!
@nasifosmanshuvra86072 жыл бұрын
Great explaplnation Sir! How can I provide batches of Images by using data generator for image dataset to Xgb classifier model to fit images and labels ??
Sir I want to use sotmax as objective, I have 4 dependent varaibles. How to make xgboost understand that there are 4 such variables? Pls reply.
@DataMites3 жыл бұрын
Hi Sai Akhil Katukam, Thanks for your comment. If you want to use softmax and define the number of class in xgboost you need to put the following parameter while building the model... from xgboost.sklearn import XGBClassifier XGBClassifier(objective= 'multi:softmax', num_class=4,...)
@arjungoud34502 жыл бұрын
There is explanation of what they. Hoping you would a video in more detail
@DataMites2 жыл бұрын
sure, will do that
@gauravrajpal19944 жыл бұрын
Very good explanation and test strategy, thank you so much sir
@DataMites4 жыл бұрын
All the best
@analuciademoraislimalucial60393 жыл бұрын
Thanks Teacher. Love it explanation
@DataMites3 жыл бұрын
You're welcome!
@NextVersionOfYou3 жыл бұрын
Thank you. What's said regarding random state... true for regression problems as well?
@DataMites3 жыл бұрын
Hi , yes Heshini
@estebanbraganza10674 жыл бұрын
Amazing video it would be better if you could use a different dataset so we can see the effects of the different parameters better.
@DataMites4 жыл бұрын
Sure will do that since this is to explain you basic concept.
@AkshayArbune7 ай бұрын
Very helpful Video
@DataMites7 ай бұрын
Glad it was helpful!
@welcomethanks51922 жыл бұрын
WHy your digital pad can have pressure? my wacom intuos doesn't?
@DataMites2 жыл бұрын
Can you reframe your question?
@welcomethanks51922 жыл бұрын
@@DataMites I mean you are writing something with a digital pad and the words you write can have different thicknesses. But my digital pad only works like a marker pen(all same thickness)...
@DataMites2 жыл бұрын
@@welcomethanks5192 You will have an option to change the thickness
@qazdata-science44204 жыл бұрын
Amazing Tutorial!!!!
@DataMites4 жыл бұрын
Thanks!
@madhur0893 жыл бұрын
Thank you this helped in understanding
@DataMites3 жыл бұрын
Glad it helped!
@majorcemp36124 жыл бұрын
Hi, what about gamma, don't you use it ? I think it's the only important missing here.
@vikasrajput19574 жыл бұрын
I guess since he is already using max_depth just 2-3, he doesn't need much of a pruning parameter for the trees, I guess. Your thoughts?
@majorcemp36124 жыл бұрын
@@vikasrajput1957 Surely, and you can tune parameters differently with gamma too, I just think in term of education he should mention it 😅😊
Sir this problems also in the gradient boosting? Am i correct? If it in, we can do as you explained. If no, what have we da sir? Thank you sir, your videos are amazing ❤️
@DataMites3 жыл бұрын
Hi, Thank you for your comment, can you clarify which problem you are trying to figure out?
@carlmemes97633 жыл бұрын
@@DataMites overfitting sir....
@xolanijozi83753 жыл бұрын
This is great.
@DataMites3 жыл бұрын
Thank you
@pradeepsharma304 жыл бұрын
This is amazing stuff!!
@DataMites4 жыл бұрын
Thank you!
@kuox00054 жыл бұрын
It appears that the target variable, y, is limited to nx1 array for making predictions using XGBOOST. Could the target variable, y, be a nXm, where m > 1, array ?
@DataMites4 жыл бұрын
Yes possible, you can use multioutputregressor as a wrapper on xgboost
@gauravverma3653 жыл бұрын
Such an informative video about the tunning of xgboost hyperparameter. My question is, can we extract mathematical equation for the input and output parameters. For instance, I have successfully applied Xgboost regression to predict y parameter using X1, X2, X3, X4 input parameters, now how can I get the xgboost's predicting equation between those input and output parameters. Please provide the information in this manner
@DataMites3 жыл бұрын
No we cannot extract mathematical equation
@avaolsen13393 жыл бұрын
Thank you, Mr. Veda! This is really helpful. I have a question: is there an efficient way to tune these parameters automaticall?.
@DataMites3 жыл бұрын
Hi Ava Olsen, you can automate the tuning of hyper parameter using python scripts. Or you can have a look in automl.
@youmadvids3 жыл бұрын
@@DataMites Hi, what about GridCV?
@allalzaid18722 жыл бұрын
grid search cv
@avaolsen13392 жыл бұрын
But grid can is resource/time consuming. Is there an efficient way to do it?
@wimavlogs68264 жыл бұрын
can you do a full video of time series forecasting for any future prediction using previous data? (Using XGBoost)
@DataMites3 жыл бұрын
We will definitely do in future. Thank you
@rafsunahmad48553 жыл бұрын
Is knowing the math behind algorithm must or just knowing that how algorithms works is enough? please please please give a reply.
@DataMites3 жыл бұрын
"Hi Rafsun Ahmad, thanks for your comment. It is necessary to know the math and other background behind any algorithm so that you will have better idea on why and how that algorithm should be used."
@rafsunahmad48553 жыл бұрын
Thank you very much
@vikasrajput19574 жыл бұрын
increase learning rate makes the algorithm learn faster but at the cost of accuracy and does not dicrease the sensitivity contributed by a single point by a great amount, and thus does not generalises the model well and leads to overfitting in some cases
@DataMites4 жыл бұрын
That is what convergence of algorithm means.
@Nixterrex3 жыл бұрын
Thank you! Are the parameters for XGBClassifier similar for the XGBRegressor? I can look at the documentations on my own, but it’s late at night for me and I can’t sleep thinking about it but i also don’t want to get sucked back into my project (i fixate XD) and i need to sleep hahah… Thank you again though! The video really helped me. I’m only 3 months into learning data science with python so it feels good every time i finally piece things together.
@DataMites3 жыл бұрын
Hi Niko Blanco, yes you can find some similar parameters in XGBClassifier and XGBRegression. Thank you
@praveenk3023 жыл бұрын
What is min_child_weight and its significance?
@DataMites3 жыл бұрын
Hi, please refer to this documentation. xgboost.readthedocs.io/en/latest/parameter.html
@prajothshetty68484 жыл бұрын
great video sir! straight & to the point explanation. sir where is the link to the code report or the repository?
@DataMites4 жыл бұрын
We request you to pause video and type the code and will soon update the code in the description
@davintjandra42264 жыл бұрын
Hey, i ve got a question, say if i use a correlation matrix, and manually deselect the feature that are ambiguous(neutral), can i still put the col sample as 1?? Great tutorial man
@DataMites4 жыл бұрын
Yes you can but check how you model performed.
@2broke2code4 жыл бұрын
Starts at 14:50
@mdfahd17954 жыл бұрын
Keep it up bro
@DataMites4 жыл бұрын
Thank you!
@souptikmukhopadhyay65312 жыл бұрын
If your train accuracy is 1 and test accuracy is 0.97 how can you say that the model is overfitted ? The model is clearly performing very well on the test data. What you can do is perform k-fold cross validation to be more sure that it gives high accuracy on various test sets .... But having high train and test accuracies is not overfitting, it means that the data is relatively simple for the model to learn.
@DataMites2 жыл бұрын
Yes it could be a simple dataset. But we can validate this model using cross validation to see if model overfits.
@planetscore4 жыл бұрын
What a chaos!
@ltrahul10162 жыл бұрын
nice
@DataMites2 жыл бұрын
Thank you.
@johnmasalu87033 жыл бұрын
Fruitful and informative training, please share your email, for clarifications on some of the issues
@DataMites3 жыл бұрын
"Hi John Masalu, Thanks for reaching to us. You can share all your queries and doubt here in the comment section, we will reply in the comment itself."
@wangrichard21403 жыл бұрын
perfect!
@DataMites3 жыл бұрын
Thank You!
@dineshpramanik25714 жыл бұрын
please keep your microphone near your mouth...can't hear properly
@aiinabox12602 жыл бұрын
Training accuracy was 1 don't u think it's a overfit
@DataMites2 жыл бұрын
Yes. Hyperparameter tuning will help to overcome that. But as said, this is a very small dataset.
@shashankgpt943 жыл бұрын
you could have chosen a better dataset
@DataMites3 жыл бұрын
Hi Shashank Gupta, thank you for your suggestion but this dataset is working good for this task.
@nassimbouhaouita16972 жыл бұрын
the data was too easy for the model
@DataMites2 жыл бұрын
Yes. This video is to focus on hyper parameters of XGBoost.
@lextor995 жыл бұрын
Better to make this on a real dataset, that's how this video could be better.
@DataMites5 жыл бұрын
Aleksei, Do you mean a large dataset? The one used in this video is a real dataset, contributed by the University of Wisconsin in 1995. ref: archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
@lextor995 жыл бұрын
@@DataMites, Yeah I mean something more realistic and more challenging.
@DataMites4 жыл бұрын
@@lextor99 Sure.
@nathan_falkon364 жыл бұрын
it's enough for it's teaching proposal i think
@wimavlogs68264 жыл бұрын
can you do a full video of time series forecasting for any future prediction using previous data? (Using XGBoost)
@DataMites4 жыл бұрын
Sure till that time keep checking our channel for more videos