FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

  Рет қаралды 18,980

Yannic Kilcher

Yannic Kilcher

Күн бұрын

Пікірлер: 21
@manuelpariente2288
@manuelpariente2288 4 жыл бұрын
Thanks again :-) Loved the critic at the end. Also, nice from them that they report these results, lots of papers would silence it to make it seem like the method brought all the gains !
@herp_derpingson
@herp_derpingson 4 жыл бұрын
78% accuracy from 1 image per class. This blew my mind. What a time to be alive.
@TeoZarkopafilis
@TeoZarkopafilis 4 жыл бұрын
HOLD ON TO YOUR PAPERS
@meudta293
@meudta293 4 жыл бұрын
my brain matter is all over the floor right now hhh
@matthewtang1489
@matthewtang1489 4 жыл бұрын
@@TeoZarkopafilis Woah! A fellow scholar here!
@shrinathdeshpande5004
@shrinathdeshpande5004 4 жыл бұрын
definitely one of the best ways to explain a paper!! Kudos to you
@sora4222
@sora4222 2 жыл бұрын
I loved the critique at the end. Thanks.
@hihiendru
@hihiendru 4 жыл бұрын
just like UDA, emphasis on way you augment. and poor UDA got rejected. ps LOVE your breakdowns, please keep them coming.
@vishalahuja2502
@vishalahuja2502 3 жыл бұрын
Yannic, nice coverage of the paper. I have one question: at 15:05, you explain that the pseudo-label is used only if the confidence is above a certain threshold (which is also a hyperparameter). Where is the confidence coming from? It is well known that the confidence score coming out of softmax is not reliable. Can you please explain?
@jurischaber6935
@jurischaber6935 2 жыл бұрын
Thanks again...Great teacher for us students. 🙂
@hungdungnguyen8258
@hungdungnguyen8258 8 ай бұрын
well explained. Thank you
@AmitKumar-ts8br
@AmitKumar-ts8br 3 жыл бұрын
Really nice explanation and concise...
@abhishekmaiti8332
@abhishekmaiti8332 4 жыл бұрын
In what order do they train the model, feed the labelled image first and then the unlabelled ones? Also, can two unlabelled images of the same class have a different pseudo label?
@YannicKilcher
@YannicKilcher 4 жыл бұрын
I think they do everything at the same time. I guess the labelled images can also go the unlabelled way, yes. But not the other way around, obviously :)
@tengotooborn
@tengotooborn 4 жыл бұрын
Something which I find weird: isn’t a constant pseudolabel always correct? It seems that there are only positive examples in the scheme which uses the unlabeled data, and so there is nothing in the loss which forces the model to not always output the same pseudolabel for everything. Yes, one can argue that this would fail the supervised loss, but then the question becomes “how is the supervised loss weighted w.r.t. the unsupervised loss”. In any case, it seems that one would also desire to have negative examples in the unsupervised case
@christianleininger2954
@christianleininger2954 4 жыл бұрын
Really Good Job please keep going
@ramonbullock6630
@ramonbullock6630 4 жыл бұрын
I love this content :D
@NooBiNAcTioN1334
@NooBiNAcTioN1334 3 жыл бұрын
Fantastic!
@reginaldanderson7218
@reginaldanderson7218 4 жыл бұрын
Nice edit
@Manu-lc4ob
@Manu-lc4ob 4 жыл бұрын
What is the software that you are using to annotate papers Yannic ? I am using Margin notes but it does not seem as smooth
@Dr.Z.Moravcik-inventor-of-AGI
@Dr.Z.Moravcik-inventor-of-AGI 4 жыл бұрын
Google again, wow! 😂
Gradient Surgery for Multi-Task Learning
32:16
Yannic Kilcher
Рет қаралды 8 М.
Supervised Contrastive Learning
30:08
Yannic Kilcher
Рет қаралды 61 М.
Air Sigma Girl #sigma
0:32
Jin and Hattie
Рет қаралды 45 МЛН
Self-supervised learning and pseudo-labelling
24:25
Samuel Albanie
Рет қаралды 5 М.
Neural Architecture Search without Training (Paper Explained)
35:06
Yannic Kilcher
Рет қаралды 28 М.
Deep Ensembles: A Loss Landscape Perspective (Paper Explained)
46:32
Yannic Kilcher
Рет қаралды 23 М.
All Machine Learning Beginner Mistakes explained in 17 Min
18:02
Infinite Codes
Рет қаралды 36 М.
Meta Pseudo Labels
17:52
Connor Shorten
Рет қаралды 7 М.