YOLO Object Detection (Part 1)

  Рет қаралды 49,534

SCET Berkeley

SCET Berkeley

Күн бұрын

Пікірлер: 57
@Kmysiak1
@Kmysiak1 4 жыл бұрын
The audio sucks but this man knows what he's talking about. I was taking Andrew Ng's deep learning course which confused the hell out of me and these videos made it much clearer! Can you maybe produce a video explaining the training of the model. Something which would explain the input features.
@prasanjitrath281
@prasanjitrath281 4 жыл бұрын
You mention the metric as "Union over Intersection"? By the formula you mentioned, I'm pretty sure the metric is "Intersection over Union" as the latter makes sense from the division. Do think about this or let me know if the former one is actually also in place.
@bobbychristopher2637
@bobbychristopher2637 3 жыл бұрын
i guess I'm pretty off topic but do anyone know a good site to watch new series online ?
@collinjamal6644
@collinjamal6644 3 жыл бұрын
@Bobby Christopher Flixportal :)
@bobbychristopher2637
@bobbychristopher2637 3 жыл бұрын
@Collin Jamal Thank you, I signed up and it seems to work =) I really appreciate it !!
@collinjamal6644
@collinjamal6644 3 жыл бұрын
@Bobby Christopher glad I could help xD
@randalllionelkharkrang4047
@randalllionelkharkrang4047 2 жыл бұрын
Yeah it's intersection over union.
@RS-vu5um
@RS-vu5um 4 жыл бұрын
Audio quality is bad
@randalllionelkharkrang4047
@randalllionelkharkrang4047 2 жыл бұрын
You are an amazing teacher . Thank you for sharing this.
@dorasnaranjit82
@dorasnaranjit82 Жыл бұрын
A part from the IoU (not UoI) these explanations are great! Thank you :-)
@charleenlozi4775
@charleenlozi4775 2 жыл бұрын
12:20 I thought yolo has no pooling layer?
@rodghani6692
@rodghani6692 Жыл бұрын
Super good review. THANK YOU
@abdshomad
@abdshomad 3 жыл бұрын
Thank you very much for the clear explanation. Where can I watch the "part 2" of this series? The title said this is "part 1"
@drawdeelyofiug4651
@drawdeelyofiug4651 3 жыл бұрын
kzbin.info/www/bejne/pnfTZoqFpLyHorc . Second part :)
@abdshomad
@abdshomad 3 жыл бұрын
@@drawdeelyofiug4651 Thank you. Very helpful ....
@reubenthomas1033
@reubenthomas1033 2 жыл бұрын
@@abdshomad Where is the second part?
@abdshomad
@abdshomad 2 жыл бұрын
@@reubenthomas1033 seems like this is the 2nd part: kzbin.info/www/bejne/pnfTZoqFpLyHorc
@s2ms10ik5
@s2ms10ik5 2 жыл бұрын
thank god for the subtitles
@fukui307
@fukui307 2 жыл бұрын
should it be 5(B+C)?
@giprincesa
@giprincesa 4 жыл бұрын
very good details on Yolo, thank you
@fatanehsadeghi5723
@fatanehsadeghi5723 Жыл бұрын
explanation is really great. thank you for fluently and simple explanation.just the audio wasn't great as much. thank you so much
@lakshaydulani
@lakshaydulani 2 жыл бұрын
really nice video! do we call the Bounding boxes at 5:29 as "Anchor boxes"?
@GARUDA1992152
@GARUDA1992152 2 жыл бұрын
Anchor boxes are nothing but initial guesses of the bounding boxes, calculated using the aspect ratios and sizes of bounding boxes in the training dataset
@samc6368
@samc6368 2 жыл бұрын
at 11:00 isnt it better label with S x S X (5 (B+C))
@samc6368
@samc6368 2 жыл бұрын
Excellent overview, thanks, one more clarification at 15:00 is it UoI or IoU ?
@miko1335
@miko1335 2 жыл бұрын
Amazing teacher ! Thank you
@nmaajidkhan
@nmaajidkhan 2 жыл бұрын
Pro Tip before you begin the video: Use subtitles to relate with the audio
@noureddineghoggali2380
@noureddineghoggali2380 3 жыл бұрын
where can I found the code or this tutorial part 2
@umar_muhammad_yaree
@umar_muhammad_yaree 2 жыл бұрын
Nice video 👍 Can you share the slides
@pathikghugare
@pathikghugare 2 жыл бұрын
Such a clear explaination ! but I want to make sure that what I understood is correct so here's my understanding and doubts: 1. we divide image into S x S grid 2. In each grid, we try to predict probability that the bounding box(which we are predicting from our model) contains an object or not 3. With 2, we try to predict the coordinates of the bounding box and the respctive conditional probabilities of classes 4. Step 2,3 is I suppose the output of the model w.r.t each grid but I am still confused that if B is no of bounding boxes which we want to predict then why do we need 5B+C vectors?
@marcospiotto9755
@marcospiotto9755 Жыл бұрын
i think 5B+C is the lenght of the y vector, so if B = 2 then the y vector needs 5 elements for p,x,y,h,w of the first bounding box, then p,x,y,h,w for the second bounding box and lastly C elements for the probability of each class, 5*2 + C
@neotodsoltani5902
@neotodsoltani5902 Жыл бұрын
why the instructor says UoI thought the whole course?? isn't it IoU? (as the formula shows, Intersection over Union)
@citizenuniverse8808
@citizenuniverse8808 6 ай бұрын
Anyone confused about what the difference between c and p in the output vector?
@salmakhaled2397
@salmakhaled2397 2 жыл бұрын
Thank you 🙏🏻
@sb-tq3xw
@sb-tq3xw 4 жыл бұрын
when we train YOLO what are the labels? are labels also a tensor of shape SxSx(5B+C) ?
@toonepali9814
@toonepali9814 4 жыл бұрын
yup
@tulliolevichivita5130
@tulliolevichivita5130 4 жыл бұрын
Hi, All!. Thank you for this good video, but I'm wondering why the formula is S*S*(5*B+C), because according to this kzbin.info/www/bejne/rIPUhIJsh9ijqrc the formula should be S*S*B*(5+C). Can you elaborate on that?
@TheEully
@TheEully 3 жыл бұрын
@@tulliolevichivita5130 Hi! Here's what I interpreted from the video. SxS refers to the number of grids initially defined. For each of those grids there is a certain amount of Bounding Boxes (B) defined by p_c, b_h, b_w, b_x, b_y (5 params) and the probabilities of each bounding box belonging to the different classes (C). I think the second formula is the right one, as it makes no sense defining bounding boxes and not clasifying the object in it.
@poojakabra1479
@poojakabra1479 3 жыл бұрын
Great explanation, thank you!
@ahmednserel_din2786
@ahmednserel_din2786 10 ай бұрын
can you share slides
@ExplotaOxxos
@ExplotaOxxos 4 жыл бұрын
thanks, very useful video. its possible to ignore some classes from coco? to detect only cats and ignore the others 79 detections
@nguyenvu6371
@nguyenvu6371 4 жыл бұрын
You have to re-train it or you can just display the bbox and label of the objet you want, ignore the rest
@toonepali9814
@toonepali9814 4 жыл бұрын
can anyone explain bh and bw? what does it mean by percentage?
@vigneshwaranm456
@vigneshwaranm456 3 жыл бұрын
bh is the height of the detected object and bw is the width, the percentage say that yolo is sure that the detected object is 0.5 that is 50%
@kamiseqYT
@kamiseqYT 4 жыл бұрын
The content is one thing, knowing what to say is other but you need to master how present the information and how you speak, sound quality is really bad. But I like the content. Thanks.
@daffercoll1998
@daffercoll1998 3 жыл бұрын
Thanks a lot!
@9891676610
@9891676610 Жыл бұрын
At 11.08 output should be (S, S, No of Bounding Box x (5 + No of Total Classes)) and not (S, S, (5X no of bounding boxes + No of Classes))
@zukofire6424
@zukofire6424 Жыл бұрын
no you're wrong, read the paper is says that for each cell you get B*5+C values as output
@moawiyaguinoubi836
@moawiyaguinoubi836 3 жыл бұрын
the sound is sooo low i could barely hear you :(
@saidgadiri6393
@saidgadiri6393 4 жыл бұрын
thanks
@BasicPoke
@BasicPoke 3 жыл бұрын
Thanks for the video. The audio is terrible.
@bitbyte8177
@bitbyte8177 3 жыл бұрын
You voice is dropping a lot
@sahhaf1234
@sahhaf1234 3 жыл бұрын
Audio sucks.. All the effort put into this video went straight to garbage can because of the atrocious audio..
@ThePentanol
@ThePentanol 4 жыл бұрын
Low voice quality
@science_electronique
@science_electronique Жыл бұрын
bad quakity audio
YOLO Object Detection
21:25
SCET Berkeley
Рет қаралды 4 М.
How YOLO Object Detection Works
17:04
DeepBean
Рет қаралды 59 М.
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН
YOLO Object Detection Explained for Beginners
35:34
AI Sciences
Рет қаралды 25 М.
YOLO (You Only Look Once) algorithm for Object Detection Explained!
30:21
Balaji Srinivasan
Рет қаралды 96 М.
Introduction into YOLO v3
26:56
Валентин Сичкар
Рет қаралды 101 М.
You Only Look Once: Unified, Real-Time Object Detection
13:07
ComputerVisionFoundation Videos
Рет қаралды 130 М.
YOLOv1 from Scratch
1:43:11
Aladdin Persson
Рет қаралды 189 М.
YOLOv10: Train a Custom Model and Run Inference on Live Webcam
24:37
Nicolai Nielsen
Рет қаралды 38 М.
Deep Drowsiness Detection using YOLO, Pytorch and Python
1:18:35
Nicholas Renotte
Рет қаралды 265 М.
-5+3은 뭔가요? 📚 #shorts
0:19
5 분 Tricks
Рет қаралды 13 МЛН