YOLO11 Custom Object Detection

  Рет қаралды 9,380

Code With Aarohi

Code With Aarohi

Күн бұрын

Пікірлер: 52
@virendrasinhchavda8060
@virendrasinhchavda8060 6 күн бұрын
one of the best video on yolo model. thank you.
@CodeWithAarohi
@CodeWithAarohi 6 күн бұрын
Glad it was helpful!
@muhammadmujtaba-ai
@muhammadmujtaba-ai Ай бұрын
Can you make a little advance, like first detecting the number plate and then extracing text from it.?
@arnavthakur5409
@arnavthakur5409 Ай бұрын
Again. Worth watching your videos
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Thank you so much 😀
@patis.IA-AI
@patis.IA-AI Ай бұрын
better and better a pleasure this tutorial
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Thank you!
@soravsingla8782
@soravsingla8782 Ай бұрын
Very well explained
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Glad it was helpful!
@pifordtechnologiespvtltd5698
@pifordtechnologiespvtltd5698 Ай бұрын
Excellent work
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Many thanks
@fatima-arbab
@fatima-arbab Ай бұрын
Yes plz ma'am
@Sunil-ez1hx
@Sunil-ez1hx Ай бұрын
Amazing video
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Thanks!
@simonezuliani
@simonezuliani Ай бұрын
Thank you for your tutorials. They are very practical for me as I'm new to using AI models. I'd like to know if you've already made videos, or if you can make a video, on how to create models from scratch, especially techniques to achieve a good model that can capture the information we want. Let me give you an example: I want to recognize whether the bottle in my photo is a 2L Coca-Cola, 1L, or 600ml. Since they have very similar shapes and labels, pre-trained models like ResNet or others confuse them. If I create the model from scratch, I get worse performance. So I wonder, how do I push my model to focus on increasingly finer details to recognize the difference between these products?
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
In the mentioned scenario, you can work to get the size of the bottle. First detect the bottles using object detection model and then check the size of each bottle
@soravsingla8782
@soravsingla8782 Ай бұрын
Superb 👍👍👌👌👏👏
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Thanks 🤗
@voltiz880
@voltiz880 25 күн бұрын
Can we used semi-supervised model to train yolo like you do on custom dataset ? If yes, can you explain or do a video on this topic? Thanks a lot for your videos !
@Robasdelight
@Robasdelight Ай бұрын
Copy move forgery detection in vedio using machine learning Use model: yolo Data set casia Please mam tell me how much time you upload vedio on above topic
@vivekanandand8107
@vivekanandand8107 Ай бұрын
Thank you. I following your AI videos regularly. May i know which laptop u using for ML and DL models. It will help to practice to learning.
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
This tutorial is tested on PC (64GB RAM, NVidia RTX 3090 24GB vRAM) but you can run AI programs (except LLMs) on any Laptop or PC which have minimum 8GB RAM and Nvidia's GPU with atleast 6GB vRAM. Processing speed will be slow as per the model you are testing but it will work.
@vivekanandand8107
@vivekanandand8107 Ай бұрын
Thank you🙏
@vivekanandand8107
@vivekanandand8107 Ай бұрын
Thank you Madam
@rezarzvn4314
@rezarzvn4314 11 күн бұрын
Hi, great video! I'm interested in learning how to export and run the YOLO11 model in TFLite format. Could you please share a tutorial or code snippet on this in your next video or as a comment? Thanks!
@CodeWithAarohi
@CodeWithAarohi 10 күн бұрын
I haven't tried that yet but topic noted. I will definitely make video on requested topic.
@YashJain-v9o
@YashJain-v9o Ай бұрын
Thank you for the clear instructions. Is there a way in this to freeze certain layers while fine tuning or retraining?
@CodeWithAarohi
@CodeWithAarohi 28 күн бұрын
from ultralytics import YOLO model = YOLO('yolov8.pt') for param in model.model.backbone.parameters(): param.requires_grad = False # Freeze backbone layers # If you want to freeze specific layers, you can do something like this: for name, param in model.named_parameters(): if "some_layer_name" in name: param.requires_grad = False # Replace with your specific layer names
@YashJain-v9o
@YashJain-v9o 23 күн бұрын
@@CodeWithAarohi Thank you so much!
@abdullahmahir8478
@abdullahmahir8478 Ай бұрын
Thanks sister, you nailed it 🔥 . I wanna know that can we use google colab for do this project? Because we don't need to have much gpu if we use google colab
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Yes, You can use google colab. Code will be same. You only need to select the gpu from notebook settings of Colab and then just change the paths where ever required.
@salvadornunez23
@salvadornunez23 Ай бұрын
genia un beso , desde argentina
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Thanks!
@hasanserdarmacit6901
@hasanserdarmacit6901 Ай бұрын
Thank you ❤
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
You're welcome 😊
@arpittalmale6440
@arpittalmale6440 Ай бұрын
Thank you Ma'am
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Most welcome 😊
@g.s.3389
@g.s.3389 Ай бұрын
based on your experience how many epocs give good results so that more than that it is a waste of time/resources?
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
The number of epochs needed for good results in object detection can vary widely based on several factors like for larger and more complex datasets needs more epochs. But there are some models which converge faster than others so in this case less epochs will also give you good results. Also, well-tuned learning rate can influence how quickly a model learns. Generally, many object detection models may start to show good results between 50 to 200 epochs.
@g.s.3389
@g.s.3389 Ай бұрын
@@CodeWithAarohi thx, i have just run your video training with the 20.000+ images and I noticed that after 80 epocs no major improvements have been donne. I did the same on hte 40.000+ dataset and I have seen the same.
@brpatil_007
@brpatil_007 Ай бұрын
Mam can you make a video on Conversational Image Recognition Chatbot. Please it would helpful..
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
I will try
@gomgom330
@gomgom330 8 күн бұрын
Hi, have u tried to export model to onnx format, why its size is large best.pt = 45.2Mb, but my onnx model = 87.Mb.... I set format='onnx', dynamic=True, half=True, device=0(GPU), int8=True
@nomannosher8928
@nomannosher8928 Ай бұрын
Thank you. Can I implement YOLO11 on jetson TX2?
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
You need python 3.6 or higher
@mushiralam8811
@mushiralam8811 Ай бұрын
we can also use Roboflow to our own dataset and annotation?
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Yes
@manindharthirupathi1133
@manindharthirupathi1133 Ай бұрын
mam im doing the same but for fire detection, how to print 'fire detected' in output from live cam only if fire detected . is it possible
@CodeWithAarohi
@CodeWithAarohi Ай бұрын
Yes, you can do that. You just need to print "fire detected" if fire is detected. You can use if condition.
@selinayerdinc9531
@selinayerdinc9531 3 күн бұрын
I have done the exact same steps but after training I used results=model.val(data='testData.yaml', split='test') code to see the metrics of model on test data set. Is that correct use ?
@CodeWithAarohi
@CodeWithAarohi 2 күн бұрын
docs.ultralytics.com/modes/val/
@qlm8302
@qlm8302 Ай бұрын
Can you please make a video without using API
YOLO11 Instance Segmentation on Custom dataset
19:40
Code With Aarohi
Рет қаралды 3,1 М.
Amazing remote control#devil  #lilith #funny #shorts
00:30
Devil Lilith
Рет қаралды 16 МЛН
YOLOv11 Object Detection on Custom Dataset | Step-by-Step Guide
19:58
YOLOv8 | Object Detection on a Custom Dataset using YOLOv8
17:41
Code With Aarohi
Рет қаралды 142 М.
YOLO11: Train on Custom Dataset on Google Colab for Free
11:38
Nicolai Nielsen
Рет қаралды 2,4 М.
Ultralytics Yolo (Yolov11). Do you need it?
14:09
Anton Maltsev
Рет қаралды 2,5 М.
YOLOv11 Instance Segmentation on Custom Dataset | Step-by-Step Guide
14:01
YOLOv11 vs YOLOv10 vs YOLOv9 vs YOLOv8 | A Deeper Detection Accuracy Comparison
3:34
Dr. Priyanto Hidayatullah
Рет қаралды 4,2 М.
YOLOv5 training with custom data
20:29
SoftwaresAI
Рет қаралды 433 М.
YOLOv11 for Real-Time Class-Wise Vehicle Counting and Tracking
36:47
Code With Aarohi
Рет қаралды 1,4 М.