I have never used the Lambert W() function because it is not on my calculator, but I have iteratively solved for all three real roots of this and similar equations, either by using fixed-point or Newton-raphson iteration. Everyone should become proficient in using these iterative methods to solve a wide range of nonlinear systems of equations.
@zawatsky2 күн бұрын
Эволюция математика: от "да это устно решается!" до "неужели нет способа найти все корни без функции Ламберта?!".🤭
@Checkyourself.Physics.Math-GB2 күн бұрын
Similar problem solved without Lambert function: kzbin.info/www/bejne/hHjGY6Z6l9CYaZY
@slickback_was_taken9 сағат бұрын
This is mental math. 😂😂
@easystat19292 күн бұрын
Why divideb by 2x it's confusing
@CanerDeniz13 күн бұрын
@rainerzufall422 күн бұрын
(x > 0!) - ln x / x = - ln x / e^(ln x) = - ln x e^(- ln x) => W_n(- ln x / x) = - ln x, as long als ln x / x < 1 / e (for W_0 branch). Now, x=2 is positive and ln 2 / 2 is 0.69314... / 2 = 0.34657... and 1 / e = 0.36788..., so ln 2 / 2 < 1 / e. Thus follows W(- ln 2 / 2) = - ln 2 = -0.69314... and x_1 = 1 / e^W_0(-ln 2 / 2) = e^(ln 2) = 2. So much for the W_0 branch! ln |x| / x = ln 2 / 2 => W_k(- ln |x| e^(- ln |x|)) = W_l(- ln 2 e^(- ln 2)) = W_m(- ln 4 e^(- ln 4)), l = 0. Probably m=-1, have to check. The problem starts with x=4. There are reasons, why W_0 is not sufficient here! One is that ln 2 / 2 = 2 ln 2 / 4 = ln 2² / 4 = ln 4 / 4. There is no difference in ln x / x for x=2 and x=4. Thus you need another branch to explicitly select the solution. For x < 0, it's even more complicated: ln x is not available, nor is x = e^(ln x) true. You must circumvent this with a special case. As you said, something with ln |x|. To my own shame, I saw x=2 and x=4, but I oversaw the negative solution (that is only possible because of the even exponent!)... shit happens!
@rainerzufall422 күн бұрын
Why didn't you do the same thing on the right side - immediately? (I expect, you'll do it later in the video).
@rainerzufall422 күн бұрын
Okay, you didn't. My answer has moved to the comment root...
@ManojkantSamal3 күн бұрын
X=2 because if a^m=m^a, then a=m Another method X^2=2^x Take the log logx^2=log 2^x 2.log x=x. log2 logx/x=log2/2 So, X=2
@ainamanicolleb3 күн бұрын
logx/x=log2/2 how did you get that?
@ManojkantSamal3 күн бұрын
@ainamanicolleb , Taking the antilog of the equation....
@боженкогеоргий2 күн бұрын
4?
@SEBE3835Сағат бұрын
Better watch the video because you only found 1 solution of the 3.
@ManojkantSamal3 күн бұрын
Nice, A better way to shape this problem as of Lambert w function...
@RyanLewis-Johnson-wq6xs2 күн бұрын
X=2 X=4 X^2=2^X
@therozer12033 күн бұрын
How x=e^ln x ?? I didn't get it
@l0l_h8d_l0l53 күн бұрын
The e and the ln cancel out
@payoo_26742 күн бұрын
e^x is the inverse function of ln(x) ln(x) is the inverse function of e^x so e^ln(x) = x and ln(e^x) = x The same principle applies to Lambert's W function, which is the inverse function of xe^x so W(xe^x) = x