Running Cell Ranger count
13:24
Пікірлер
@jawswasnevermyscene4258
@jawswasnevermyscene4258 3 сағат бұрын
Thank you so much for posting this. Hope to see more of cellranger
@hya995a
@hya995a Күн бұрын
could not read H5, need to install hdf5r, how to solve this problems
@Collection_of_online_tutorials
@Collection_of_online_tutorials 14 сағат бұрын
install it😀
@seyedtalebhouseini3360
@seyedtalebhouseini3360 2 күн бұрын
Hello and respect Special thanks for your useful videos I have an important question. I would appreciate it if you could help me I have performed spatial transcriptome data analysis (Visium HD) for colorectal cancer as instructed in your videos If we analyze the spatial transcriptomics data and want to continue the QuPath analysis, how should we find the file related to the QuPath software that is related to colorectal cancer? And related to the results of our analysis? I mean, how can we find the qptiff file that you upload in QuPath software for colorectal cancer? With great respect
@Collection_of_online_tutorials
@Collection_of_online_tutorials 2 күн бұрын
the qptiff in QuPath is from a tonsil tissue, you need search if there are free colorectal cancer data or not
@seyedtalebhouseini3360
@seyedtalebhouseini3360 Күн бұрын
@ thank you very mush
@hya995a
@hya995a 4 күн бұрын
I dont have Library(tidyverse), Any suggestion?
@Collection_of_online_tutorials
@Collection_of_online_tutorials 4 күн бұрын
install it
@PaolaPibiri-d5l
@PaolaPibiri-d5l 9 күн бұрын
Is this a pipeline for Xenium data alone, or includes the single-cell RNA data in it ?
@Collection_of_online_tutorials
@Collection_of_online_tutorials 9 күн бұрын
Xenium data alone
@saleenay1879
@saleenay1879 10 күн бұрын
I have one more doubt, if we are using only one sample, then can we use fgsea, is it make any sense.
@Collection_of_online_tutorials
@Collection_of_online_tutorials 10 күн бұрын
yes, fgsea is for signaling pathways between cells
@alkarani01
@alkarani01 12 күн бұрын
How can I analyse single .tsv file on R using Seurat? e.g. GEO - GSE249493
@Collection_of_online_tutorials
@Collection_of_online_tutorials 12 күн бұрын
You can download the code from original publication
@Collection_of_online_tutorials
@Collection_of_online_tutorials 14 күн бұрын
library(Seurat) library(spacexr) library(tidyverse) set.seed(12345) ### Load Visium HD data cortex <- Load10X_Spatial(data.dir = "../Seurat/Visium_HD/", bin.size = 8) # bin.size = C(2,8,16) cortex <- NormalizeData(cortex) cortex <- FindVariableFeatures(cortex) cortex <- ScaleData(cortex) # sketch the cortical subset of the Visium HD dataset cortex <- SketchData(object = cortex, ncells = 50000, method = "LeverageScore", sketched.assay = "sketch") DefaultAssay(cortex) <- "sketch" cortex <- FindVariableFeatures(cortex) cortex <- ScaleData(cortex) cortex <- RunPCA(cortex, assay = "sketch", reduction.name = "pca.cortex.sketch", verbose = T) cortex <- FindNeighbors(cortex, reduction = "pca.cortex.sketch", dims = 1:50) cortex <- FindClusters(cortex, cluster.name = "seurat_cluster.sketched") cortex <- RunUMAP(cortex, reduction = "pca.cortex.sketch", reduction.name = "umap.cortex.sketch", return.model = T, dims = 1:50, verbose = T) DimPlot(cortex, label = T) # create the RCTD query object using 'SpatialRNA' function counts_hd <- cortex[["sketch"]]$counts cortex_cells_hd <- colnames(cortex[["sketch"]]) coords <- GetTissueCoordinates(cortex)[cortex_cells_hd, 1:2] query <- SpatialRNA(coords, counts_hd, colSums(counts_hd)) ### load in a scRNA-seq reference dataset ref <- readRDS("../Seurat/Visium_HD/allen_scRNAseq_ref.Rds") counts <- ref[["RNA"]]$counts view([email protected]) cluster <- as.factor(ref$subclass_label) levels(cluster) <- gsub("/", "-", levels(cluster)) # cluster <- droplevels(cluster) nUMI <- ref$nCount_RNA # create the RCTD reference object reference <- Reference(counts, cluster, nUMI) # Creating RCTD Object RCTD <- create.RCTD(query, reference, max_cores = 8) # max_cores: for parallel processing. # run RCTD RCTD <- run.RCTD(RCTD, doublet_mode = "doublet") # add results back to Seurat object cortex <- AddMetaData(cortex, metadata = RCTD@results$results_df) view([email protected]) DimPlot(cortex, label = T) DimPlot(cortex, group.by = "first_type", label = T) # change NA to Unknown cortex$first_type <- as.character(cortex$first_type) cortex$first_type[is.na(cortex$first_type)] <- "Unknown" DimPlot(cortex, group.by = "first_type", label = T) # project RCTD labels from sketched cortical cells to all cortical cells cortex <- ProjectData(object = cortex, assay = "Spatial.008um", full.reduction = "pca.cortex", sketched.assay = "sketch", sketched.reduction = "pca.cortex.sketch", umap.model = "umap.cortex.sketch", dims = 1:50, refdata = list(full_first_type = "first_type")) DefaultAssay(cortex) <- "Spatial.008um" view([email protected]) DimPlot(cortex, label = T, group.by = "full_first_type") SpatialDimPlot(cortex, group.by = "full_first_type", label = T, repel = T, label.size = 4)
@Icywings-v1b
@Icywings-v1b 16 күн бұрын
professor, can u help me with this Integrating data Warning: Layer counts isn't present in the assay object; returning NULL Merging dataset 5 4 into 6 Extracting anchors for merged samples Finding integration vectors Error: std::bad_alloc
@Collection_of_online_tutorials
@Collection_of_online_tutorials 16 күн бұрын
You can watch the seurat V5 videos for data integration
@Icywings-v1b
@Icywings-v1b 16 күн бұрын
@@Collection_of_online_tutorials Using rpca instead of pca, l'm getting 15 clusters instead of 14( integrating NML and IPF )and also cell ident is different from yours.ls that normal?
@Collection_of_online_tutorials
@Collection_of_online_tutorials 15 күн бұрын
@@Icywings-v1b it is normal
@sivasankarchandran8532
@sivasankarchandran8532 19 күн бұрын
Very useful work sir. Continue doing it.
@Icywings-v1b
@Icywings-v1b 20 күн бұрын
Professor,how do we get only 2 plot- control and IPF,I'm getting 6 of them
@Collection_of_online_tutorials
@Collection_of_online_tutorials 20 күн бұрын
you are viewing as each sample
@Icywings-v1b
@Icywings-v1b 20 күн бұрын
Professor,l am getting different cell type for the cluster shown in this video.Am l doing it wrong
@Collection_of_online_tutorials
@Collection_of_online_tutorials 20 күн бұрын
it is a good start that you can cluster the cells. You can't get exact cells as mine unless you use the same version of the software i was using.
@Icywings-v1b
@Icywings-v1b 20 күн бұрын
Professor,what could be the reason for getting varying cluster number?Does the cluster no; effect our analysis
@Collection_of_online_tutorials
@Collection_of_online_tutorials 20 күн бұрын
you really want to see which clasification matchs in vivo conditions, that is why people do validation after the anlaysis.
@Icywings-v1b
@Icywings-v1b 20 күн бұрын
Professor,can't we merge the data before preforming quality control
@Collection_of_online_tutorials
@Collection_of_online_tutorials 20 күн бұрын
yes
@sharkbebe164
@sharkbebe164 20 күн бұрын
Hello, Professor Thank you very much for sharing the videos and codes here. I have 2 question about the scenicOptions object. Since I perform the pyscenic analysis in singularity, there are 3 tsv files generated(adjacencies, regulons, auc_mtx), which uses the counts matrix get from seurat object. 1. How can I integrate this files to my seurat object to do next analysis as your video shows. Do I need to convert the seurat object to loom file? 2. I have 2 groups, how to compare between groups if I do scenic on whole expression matrix? I would be very grateful if you can provide any help. Thanks in advance. Best
@SherineM-y7w
@SherineM-y7w 21 күн бұрын
Can you please explain to make CSI plot
@SherineM-y7w
@SherineM-y7w 21 күн бұрын
Connection speficity index
@jimmylao349
@jimmylao349 21 күн бұрын
Hi Professor, can I ask a question? After I get Differentially Expressed Genes, how can I connect the log2FC with original data in RDS to make heatmap?
@Icywings-v1b
@Icywings-v1b 21 күн бұрын
How is umap and umaprpca different
@Collection_of_online_tutorials
@Collection_of_online_tutorials 21 күн бұрын
different integration method
@Icywings-v1b
@Icywings-v1b 22 күн бұрын
Professor,how do we compare merged and integrated data in dimplot
@Collection_of_online_tutorials
@Collection_of_online_tutorials 22 күн бұрын
split.by =""
@zain5415
@zain5415 23 күн бұрын
Thank you! Very Good tutorial. Can you also explain how to construct network using exportNetworkoCytoscpe function? Or is there any other method to do so for further analysis?
@gaohaohao
@gaohaohao 25 күн бұрын
When my computer executes the following code, it often freezes. adjacency = adjacency(datExpr, power = 6) TOM = TOMsimilarity(adjacency) My expression matrix has 13 samples and 20000 genes. How should I handle it? Thank you!!!
@Collection_of_online_tutorials
@Collection_of_online_tutorials 25 күн бұрын
A better compter🤩
@mandarinclub4675
@mandarinclub4675 25 күн бұрын
👍👍👍
@sergioruiz9703
@sergioruiz9703 28 күн бұрын
I was about to run liana, and then found this video uploaded just 10hrs ago. What a miracle
@Collection_of_online_tutorials
@Collection_of_online_tutorials 28 күн бұрын
library(liana) library(tidyverse) library(magrittr) show_resources() # cell-cell communication (CCC) Resources show_methods() # cell-cell communication (CCC) Methods ### liana takes Seurat and SCE objects as input, containing processed counts and clustered cells. liana_path <- system.file(package = "liana") testdata <- readRDS(file.path(liana_path , "testdata", "input", "testdata.rds")) # HUMAN PBMCs ### liana wrapper function # Run liana: returns a list of results, each element of which corresponds to a method liana_test <- liana_wrap(testdata) # call all methods that are currently available in liana. ### Aggregate and Obtain Consensus Ranks # We can aggregate these results into a tibble with consensus ranks liana_test <- liana_test %>% liana_aggregate() # RRA method from the RobustRankAggreg package ######## Visualization ### Simple DotPlot: interactions which are expressed in at least 10% of the cells liana_dotplot(liana_test, source_groups = c("B"), target_groups = c("NK", "CD8 T", "B"), ntop = 20) ### Frequency Heatmap: only keep interactions concordant between methods liana_trunc <- filter(liana_test, aggregate_rank <= 0.01) heat_freq(liana_trunc) ### Frequency Chord diagram p <- chord_freq(liana_trunc, source_groups = c("CD8 T", "NK", "B"), target_groups = c("CD8 T", "NK", "B"))
@123seebi
@123seebi 28 күн бұрын
Thnak you
@synatkeam5597
@synatkeam5597 29 күн бұрын
Will you continue the tutorial for microbiome analysis. Looking forward
@123seebi
@123seebi Ай бұрын
can you perform tutorial for LIANA cell-cell communication too?
@Collection_of_online_tutorials
@Collection_of_online_tutorials Ай бұрын
Will do👍
@zacharyolmsted3819
@zacharyolmsted3819 Ай бұрын
The polygons file is no longer available for download
@Collection_of_online_tutorials
@Collection_of_online_tutorials Ай бұрын
drive.google.com/file/d/1_pnS8XlCGZ5lmJBXd8dFVJwzxGHaaYzB/view?usp=sharing
@mandarinclub4675
@mandarinclub4675 Ай бұрын
Thanks for your video, I was able to run it following your demonstration.
@cl1468
@cl1468 Ай бұрын
Thank you. Please keep up the amazing work.
@mandarinclub4675
@mandarinclub4675 Ай бұрын
💯
@mandarinclub4675
@mandarinclub4675 Ай бұрын
your videos are excellent for beginners 👍👍👍
@clairepeng7663
@clairepeng7663 Ай бұрын
Hi Professor, thanks a lot for your video tutorial. Your explain for each step allows get the point explicitly. I have one question if I merged "control" dataset and "stimulated" dataset into one Seurat object for pre-processing workflow. In the following process, I should separate it into two dataset for PCA, UMAP, etc. Is it correct?
@Collection_of_online_tutorials
@Collection_of_online_tutorials Ай бұрын
you need run as one object, after the UMAP step, you can use split.by in Dimplot to see the UMAP seperately
@ChiaweiWoo
@ChiaweiWoo Ай бұрын
THX SO MUCH.
@ChiaweiWoo
@ChiaweiWoo Ай бұрын
Thx for your demonstration
@qhawenid
@qhawenid Ай бұрын
please continue to demonstrate how to create spliced/ unspliced data / loom files🙏
@EdgeYu
@EdgeYu Ай бұрын
Quick question: I was following your tutorial closely but I couldn’t find where moduleColors. Where was this file produced? Thank you!
@EdgeYu
@EdgeYu Ай бұрын
Could they be the same as dynamic colors as we used to generate the "Gene Dendrograms and Module Colors" Plot?
@EdgeYu
@EdgeYu Ай бұрын
老师您讲解得真好!谢谢🙏
@Szczepaaaan
@Szczepaaaan Ай бұрын
Thanks to you I became an expert bioinformatician in my lab!
@Collection_of_online_tutorials
@Collection_of_online_tutorials Ай бұрын
👏👏👏
@annalex8058
@annalex8058 Ай бұрын
Can someone please help me with this data set "GSE211033"? As when I use FindVaribaleFeatures I get the error " non-numeric argument to binary operator".
@Jing-XuanZhou
@Jing-XuanZhou 2 ай бұрын
Hello Professor, Thanks for the great lecture. l had problems practicing it. After SplitObject, MergedNML S4[19232 x 11612] became MergedNML.list: NML_I [17574 x 3615], NML_II [18130 x 3993], NML_II [16665 x 4004]. The rows number was different, why?
@Collection_of_online_tutorials
@Collection_of_online_tutorials Ай бұрын
You are using V5
@Jing-XuanZhou
@Jing-XuanZhou Ай бұрын
@@Collection_of_online_tutorials Hello Professor, Thanks for your response. I had already addressed the problem. After data scaling through "all.genes <- rownames(MergedNML)" & "MergedNML <- ScaleData(MergedNML, features = all.genes)" instead of only "MergedNML <- ScaleData(MergedNML)", I conducted "SplitObject" that enabled "MergedNML S4[19232 x 11612]" to become "MergedNML.list: NML_I [19232 x 3615], NML_II [19232 x 3993], NML_II [19232 x 4004]". The rows number was identical. I will learn the subsequent lessons from your tutorial video. Thanks for the great lecture.
@ArezouRahimi
@ArezouRahimi 2 ай бұрын
Hi I used the merge function for my seurat objects but since the size is big it can't merge them. Could you please tell me how can I merge them?
@shararehmahmoudian355
@shararehmahmoudian355 2 ай бұрын
Hello Professor, Thank you for your helpful videos. I have a question: Are you running SCENIC on Windows? After running the line scenicOptions <- runSCENIC_3_scoreCells(scenicOptions, exprMat_log), I get an error indicating that I need to install doMC package, which is not possible on Windows.
@romansasik9087
@romansasik9087 2 ай бұрын
Very useful, thank you!
@mohammadsina3260
@mohammadsina3260 2 ай бұрын
thanks for you videos, but you have lots of videos, I want to start from zero, but I lost. I wish you had a 4 hour videos from zero to hero
@Collection_of_online_tutorials
@Collection_of_online_tutorials Ай бұрын
you can watch from playlist
@ArezouRahimi
@ArezouRahimi 2 ай бұрын
Hi thatnk for your great videos! I have a question. If in the download section for the data set there would not be custom section and the only available forms would be ftp and http how should we access these data sets? thanks
@coolalexpcs
@coolalexpcs 2 ай бұрын
Thanks for sharing such an enlightening information and wonderful turorial!
@ArezouRahimi
@ArezouRahimi 2 ай бұрын
Hi in most of available data sets they only provide (ftp)(http)formats. could you please tell me how can I access these three files in those cases if custom option is not provided? thanks
@ArezouRahimi
@ArezouRahimi 2 ай бұрын
Hi thanks for your excellent videos! I have a question. Actually I have two groups, test and control. each of them has tumor samples of three mice which became mixed and then single cell analysis were done on them, so although there are three samples in each group, but I don't have p value for each group. could toy please tell me how can I have a volcano plot? thanks! And one more asking could you please teach Azimuth for annotation please?
@anacarolsilva28
@anacarolsilva28 2 ай бұрын
Hello, thank you so much for your videos. They are really helpful. I used your tutorial to analyze my data, but I want to recluster some of my cells and I can't find a tutorial for it. Could you share a code or make a video about subset and recluster, please? Thank you!
@LagnajitaChakraborty-gn4uq
@LagnajitaChakraborty-gn4uq 2 ай бұрын
Hi, I am new to this, I wanted to know there is a dataset GSE173706 in TAR (of CSV). How can we analysis this?
@ritabrataroy9797
@ritabrataroy9797 2 ай бұрын
Shut up