Пікірлер
@wakeuppeople7180
@wakeuppeople7180 7 сағат бұрын
I'm still lost in translation, because I can't figure out what "esquare root" is...
@oscarcastaneda5310
@oscarcastaneda5310 9 сағат бұрын
Call angle MDC θ, this angle is congruent to angle PAB. Call DC = AB = w. We want wcos(θ)) + 4 which is 6 + 4 = 10. To help "picture" this ... From C draw the perpendicular to side x : )
@michaelsanders2655
@michaelsanders2655 11 сағат бұрын
Drop a perpendicular line from D to line BC. Call that E. Draw a perpendicular line from A to line DC. Call that F. Now you have two triangles with the same length hypotenuse and opposite angle of 90°. 7X + 90 + 2X = 180 9X = 90 X = 10
@peppolone
@peppolone 12 сағат бұрын
10, Just draw a line parallel to the base passing through C; a triangle equal to APB is formed, with a height of 6, then add 4 of CQ. The max height of a rotating rectangle is always equal to the sum of height of A and C, it is obvious.
@kateknowles8055
@kateknowles8055 12 сағат бұрын
Completing the rectangle with base PQ and height 10. Checking out that D will be along the top edge, and the area [ABCD] is 5.PQ At first this is just a likely guess, which would give DM to equal 10 X=10? Seems a very quick answer. A horizontal line , EJ, across half way between the height of A and the height of C will start on AP and will meet QC produced at J. The very small right-angled triangles EAF and JCH are congruent, with F where EJ crosses AB, and H where EJ crosses CD because AB and CD are parallel Their sides are 1/6 of the corresponding sides of the triangle PAB . A triangle congruent to PAB is GCD which is in the top right corner of the larger rectangle So this shows that the top edge of the rectangle which is 10 units high does pass though D. X = 10 , answer.
@sakurayayoi-p2r
@sakurayayoi-p2r 12 сағат бұрын
別解法 欠けた部分に直角三角形を足すと、長方形になる。三角形の相似、合同から長方形の縦の長さは4+6=10となる。
@blogfilmes1134
@blogfilmes1134 13 сағат бұрын
Tive que assistir esse segundo método duas vezes para entender ! Que maravilha !
@kylekatarn1986
@kylekatarn1986 13 сағат бұрын
By the theorem of the chord, any chord AB of a circumference of a determined radius r is equivalent to its diameter multiplied for the sinus of one of the angles at the circumference pointed to the chord: AB=2r*sin(a) Since you have calculated x and the sinus of theta, then you will have x=2r*sin(theta), so r=x/(2*sin(theta))
@Z-eng0
@Z-eng0 14 сағат бұрын
I like that you had a second different solution ready for it, I know the 1st solution is faster, simpler, and more intuitive than the second (at least for me and many others), but seeing a second solution made me feel better. I do suggest that you try generalizing the answers though, like, in this case it'd be fun to show that x is gonna be 10 even if we change the size of the rectangle, or even the ratio of its dimensions, as long as the 6 and 4 remain. Of course, animating that would be cool, but since that might be a bit of a drag, and takes a lot of extra time, and you also might not have the knowledge or software to do that (no offense there ✋, I know many don't, me included), but I believe that'd attract ALOT of extra traffic to your videos (views, likes, even subscriptions)
@marioalb9726
@marioalb9726 14 сағат бұрын
Extremely easy : x = 4+6 = 10 cm ( Solved √ )
@guillermohermosilla1519
@guillermohermosilla1519 14 сағат бұрын
Area = 20😅
@guillermohermosilla1519
@guillermohermosilla1519 14 сағат бұрын
20😂
@jairoeveliogordillomarin5780
@jairoeveliogordillomarin5780 16 сағат бұрын
Trazo AT//PQ. AT=PM. Ángulo TAD=ángulo QBC, correspondientes entre paralelas. AD=BC, lados del rectángulo. Entonces: triángulo ATD congruente con triángulo BQC (LAL). Luego: TD=CQ= 4 u. AP=TM= 6u. X= TD+TM= 4+6= 10 u.
@tontonbeber4555
@tontonbeber4555 16 сағат бұрын
You're kidding ? it took me 0.15143 second to find the answer ...
@santiagoarosam430
@santiagoarosam430 16 сағат бұрын
La paralela a PQ por D, corta las verticales PA y QC en E y F respectivamente ---> AED y CQB son congruentes ---> MD=PE=PA+AE=PA+CQ =6+4=10. Gracias y saludos
@marcgriselhubert3915
@marcgriselhubert3915 17 сағат бұрын
Here is sothing else: Be t= angleQBC and BC'D'A' a rectangle of same dimensions than BCDA with C' on (BQ). Then BCDA is the image of BC'D'A' in the rotation center B and angle t, whose analytic expression is x' = cos(t).x - sin(t).y with y' = sin(t).x + cos(t).y. Be L = BC = BC' and l = BA = BA' the side lengthes of the two rectangles. We have C'(L; 0), so C(L.cos(t); Lsin(t)) with L.sin(t) = 4, we also have A'(0; l), so A(-l.sin(t); l.cos(t)) with l.cos(t) = 6, Finally we have D'(L; l), so D(L.cos(t) - l.sin(t); L.sin(t) + l.cos(t)) with X = L.sin(t) + L.cos(t) = 4 + 6 = 10.
@robertlynch7520
@robertlynch7520 18 сағат бұрын
It seems so simple! Draw a line from [c] to line [dm], parallel to the [pq] base line. Call the intersection point [F]. The triangle [DFC] is congruent to triangle [APB] because the rectangle's parallel sides give the same angles and lengths. Therefore, line [FD] is 6 units long. By the same reasoning, the segment [FM] is 4 units long because it too is by definition parallel to the [QC] segment. Therefore X = 6 + 4 = 10 units. No sines, cosines, wiggly piggly geometry required. Just an intersection point and a pair of congruent triangles.
@soli9mana-soli4953
@soli9mana-soli4953 19 сағат бұрын
drawing the perpendicular CH to line DM we get right triangle DHC that is congruent with APB (note infact that are AP // DM and AB // DC so angles in A and in D are equal), then DH = 6 and HM = 4 DM = 6 + 4 = 10
@bpark10001
@bpark10001 19 сағат бұрын
This can also be solved by drawing line to left from point C to meet DM at point N'. N'M = 4. Triangle DN"C is congruent to triangle APB so N'D = 6. X = 4 + 6 = 10.
@sb1.2
@sb1.2 19 сағат бұрын
Its very simple to calculate. just consider the rectangle is at angle 'k' with the base and smaller side of rectangle is 'a'. Hence cosk=(x-4)/a and in other side cosk=6/a. So, (x-4)/a = 6/a, hence x=10
@zawatsky
@zawatsky 20 сағат бұрын
х=10 - от AD легко построить ещё треугольник и доказать его равенство.
@murdock5537
@murdock5537 20 сағат бұрын
∎PQRS → PS = PA + AS = 6 + 4 = QC + CR = PA + QC = 6 + 4 → x = 10 en detail: φ = 30φ; AB = CD = a; BC = AD = b; AC = BD = y; DM = x = ? PBA = CBQ = δ; PQ = k = PB + QB = m + (k - m); PA = 6; QC = 4; sin⁡(ABC) = 1 → 1/6 + 1/4 = 5/12 = 1/m → m = 12/5 → tan⁡(δ) = 2/5 = 4/(k - m) = 20/(5k - 12) → k = 62/5 → k - m = 10; ABD = β; DBC = α → α + β = 3φ → b = 2√29 → a = (6/5)√29 → y^2 = (4/25)29(34) → y = (2/5)(√29)(√34) → sin⁡(α) = 3√34/34 → cos⁡(α) = 5√34/34 sin⁡(δ) = 2√29/29 → cos⁡(δ) = 5√29/29 → sin⁡(α + δ) = sin⁡(α)cos⁡(δ) + sin⁡(δ)cos⁡(α) = 25(√34/34)(√29/29) = x/y → x = (2/5)(√29)(√34)25(√34/34)(√29/29) = 10
@imetroangola17
@imetroangola17 20 сағат бұрын
Construct triangle AQ'D, with Q'=90° and PQ'=MD. Therefore triangle AQ'D is congruent to triangle CQB, because, ∠QCB=∠ABP=∠Q'AB, ∠QBC=∠PAB= ∠Q'DA and AD=AC.Thus, AQ'=4, we conclude that x=10.
@vitorluis2010
@vitorluis2010 21 сағат бұрын
Thumb without side with 7 unitis.
@Zollaho
@Zollaho 21 сағат бұрын
Method 0 : a simple translation. Immediate solution without calculating.
@nenetstree914
@nenetstree914 21 сағат бұрын
10
@ناصريناصر-س4ب
@ناصريناصر-س4ب 21 сағат бұрын
We put PB=a and <PAB=<CBQ=<MDC=α and from it tan(α)=a/6=MQ/(x-4) so MQ=(a(x-4))/6 and according to Pythagoras' theorem we find [a(x-4)²/6]+(x-4)²=a²+36 and (x-4)²(a²+36)=36(a²+36) and from it (x-4)²=36 so x-4=6 and from it x=10
@Rudepropre
@Rudepropre 22 сағат бұрын
Congruence best me
@harikatragadda
@harikatragadda 22 сағат бұрын
Drop a perpendicular CK on DM. ∆DKC is Congruent to ∆APB, hence DK = AP = 6 X= DK+ KM = 6+4=10
@spafon7799
@spafon7799 22 сағат бұрын
Yes, I got that solution also. It's such an easy solution there's not even any need for paper and pencil.
@zakirshukurlu1236
@zakirshukurlu1236 22 сағат бұрын
Second method was brilliant!
@WahranRai
@WahranRai 23 сағат бұрын
My Method : In triangle ABC, M is the center of gravity ( meeting point of the medians PC and AQ ) AM = 2*MQ and MC = 2*MP ---> Homothety of center M and ratio k = 2 transforms MQBP into MADC then ratio of area is k^2 = 4 ---> area shaded MADC = 4* area MQBP = 4*6 = 24
@himo3485
@himo3485 Күн бұрын
PBQM∞ADCM (1² : 2² = 1 : 4) ADCM = 24
@CleoIsSly
@CleoIsSly Күн бұрын
I used the second method to solve
@roniakter5957
@roniakter5957 Күн бұрын
I dont understand why BPM= BQM
@michaelsanders2655
@michaelsanders2655 Күн бұрын
I don’t understand how you just chose 4??? Obviously, the answer isn’t 1 or 2. I figured it would be a whole number/integer from 3 to 5, but why just select four?
@hirondas4563
@hirondas4563 Күн бұрын
AB II DC and NOT AB II CD.
@RealQinnMalloryu4
@RealQinnMalloryu4 Күн бұрын
(6)^2=36 {90°A90°B+90°C+90°D}=360°ABCD/36=10ABCD 5^5 2^3^2^3 2^1^1^3 23(ABCD ➖ 3ABCD+2).
@oscarcastaneda5310
@oscarcastaneda5310 Күн бұрын
Solution#1: It can be shown that the quadrilateral of area 6 is similar to the red quadrilateral. And since corresponding sides are in ratio 2:1 then their areas are in ratio 4:1. Desired area is 4(6) = 24. Solution#2: Labeling BQ as x and the height of triangle BMQ to side BQ as h one finds that h = (2/3)x but h = 6/x so x^2 = 9. We're asked to find (2x - h)(2x) which becomes 4x^2 - 12 so the desired area is 4(9) - 12 = 24.
@СергейТерешонков-е8ы
@СергейТерешонков-е8ы Күн бұрын
We have two similar right triangles with two angles and sides AQC and APC then AQ/AC=AC/AP 2R/5=5/4 R=25/8
@santiagoarosam430
@santiagoarosam430 Күн бұрын
M pertenece a la diagonal BD y equidista de AB y de BC→ Igualdad de bases, alturas y áreas de los triángulos AMP=PMB=BMQ=QMC=6/2=3 → QBA y PBC son congruentes→ Áreas: QBA+PBC=3*3+3*3=18 =ABCD/2 =ABC → El solapo PBQM =AMC=6 → ADCM=18+6=24 u². Gracias y un saludo cordial.
@changryu8128
@changryu8128 Күн бұрын
Circle area = pi x r^2, where r^2 = 81- sq.root(4536). I am using chromebook, so difficult to use math symbol.
@changryu8128
@changryu8128 Күн бұрын
What about the area of the circle? Since the circle was colored/highlighted, I misunderstood I had to solve the area of the circle. Instead of the rectangle. Anyway, I got the answer of the circle area. Can you show your answer?
@matthieudutriaux
@matthieudutriaux Күн бұрын
X=90°-arctan(1-2*a)-arctan(a/(1-a)) (GQ=GP=a) X=arctan((1-a)/a)-arctan(1-2*a) tan(X)=((1-a)/a-(1-2*a))/(1+(1-a)/a*(1-2*a)) tan(X)=(1-2*a+2*a^2)/(a+(1-a)*(1-2*a)) tan(X)=(1-2*a+2*a^2)/(a+2*a^2-3*a+1) tan(X)=1 X=45°
@Z-eng0
@Z-eng0 Күн бұрын
I loved the 2nd method. It's commendable. You were able to see those parallel lines there and form the alternate angles. Well done, it doesn't take long from there to find the area. One thing I need to say though is, symmetry is never a geometry argument. It can be used to say a pattern and then try to show it, but never enough without using the axioms and theorems to prove it works out.
@marioalb9726
@marioalb9726 Күн бұрын
If green área = 6 cm² then white area also is 6 cm² And right triangle area, is: A=½b.h = ½ a.2a = a² = 6+3=9 cm² a = √9 = 3 cm. ; s=2a = 6cm A = s² - 12 = 6²-12 = 24 cm²
@changryu8128
@changryu8128 Күн бұрын
angle alpha = angle beta. why do you use two separate notation?
@jairoeveliogordillomarin5780
@jairoeveliogordillomarin5780 Күн бұрын
AB=2PB y BC=2BQ. PMQB~ADCM. AM/PM=AD/PB=4/2= 2. Entonces: AM=2PM. Si los lados de una figura geométrica se duplican, su área se cuadruplica. Sí PMB=6 u², entonces: ADCM= 4×6= 24 u².
@Rudepropre
@Rudepropre Күн бұрын
Tan y = tan(45+a). Tan y = 2. Tan (y)= (1 +tana)/(1-tana) =2. Tan a =1/3. Let 2x = side of square. F/Sqrt(2)*x/2=1/3 F= sqrt(2)x/6. Area of quadrilateral= sqrt(2)x/6 *sqrt(2)x/2 +sqrt(2)x/2 =6 x^2=9. X^2-6=3. 4x^2-(6+3+3)= 24. 24 is the yellow shaded region area
@salimahmad7414
@salimahmad7414 Күн бұрын
Long method. It can be verbally solved.
@Rajan-s4j
@Rajan-s4j Күн бұрын
👍👍👍