Japanese College Test Geometry Problem | Find the shaded area of the triangle

  Рет қаралды 6,667

Math Booster

Math Booster

Күн бұрын

Пікірлер: 20
@pk2712
@pk2712 2 күн бұрын
Draw an altitude from P to point R on the base QC of triangle CPQ . Now draw another altitude from point P to S on line QC . It is then obvious that triangles PQR and AQS are similar . Since these triangles are similar , we can write : PR/AS=PQ/AQ ---- (1) AS in this equation is simple to solve from right triangle BAS : AS=BAsin45=10(sqrt(2)/2)=5sqrt(2) . AQ=PQ+AP=3AP+AP=4AP and AQ=3AP . Substituting all these values into equation (1) gives : PR/(5sqrt(2))=(3AP/4AP)=3/4 --- (2) Multiply equation through by 5sqrt(2) , and you get the height of triangle CPQ : h=PR=15sqrt(2)/4 . We know that the base of triangle CPQ is b=QC=8 . We then can calculate the area of triangle CPQ as : A=1/2bh=1/2(8)(15sqrt(2)/4)=15sqrt(2) .
@ناصريناصر-س4ب
@ناصريناصر-س4ب 3 күн бұрын
Let H and E be the perpendicular projections of points A and P on BC respectively. We have AH = 5√2 and according to Thales' theorem we have PE/AH=PQ/AQ = 3/4. From this, PE = (3/4)*(5√2) = (15√2)/4. Therefore, the area of triangle PQC is equal to (8*15√2/4)/2 = 15√2.
@matematicafacilcomprof.jua9231
@matematicafacilcomprof.jua9231 15 сағат бұрын
I did this way and I was about to write the same comment. It is easier and faster.
@五十嵐特許事務所
@五十嵐特許事務所 2 күн бұрын
Connecting points A and C creates ⊿ABC. If BQ=a, then the area X of ⊿ABC is X=AB×BC×sin45°/2=5(a+8)/√2. If the area of ​​⊿AQC is [AQC], then [AQC]=(8/(8+a))[ABC]=8X/(8+a)=20√2. ∴[PQC]=(3/4)[AQC]=(3/4)×20√2=15√2.
@imetroangola17
@imetroangola17 3 күн бұрын
*Solução:* Seja ∠AQB = α. Usando a lei do seno no ∆ AQB: sen 45°/AQ = sen α/AB (√2/2)/4AP = sen α/10 *sen α = (5√2)/4AP* Por outro lado, [PCQ] = [PQ × QC × sen (180° -α)]/2 [PCQ] = [3AP × 8 × sen α)]/2 [PCQ] = 3AP × 4 × 5√2/4AP *_[PCQ] = 15√2 U. Q._*
@kateknowles8055
@kateknowles8055 2 күн бұрын
Thank you for the geometry problem and the solution. I only got this far with this one Let X = [CPQ] [CAQ] = 4 X / 3 because AQ = 4 AP If BC =a [ABC] = (a/8 )(4X/3) because QC=8 AC is expressible in terms of a : cos (45) = ( a.a+ 10.10 - AC.AC )/ (20a) AC.AC = a.a +10.10 - 20a (1/root(2)) = 100 +a.a - 10a(root(2)) It would be too convenient if BC were 10 root(2) ? [ABC] =50? (10root(2)/8)(4/3)X =50 X = 50/10 (8)(3) /(4root(2)) = 15.root(2)? There seems to be an information gap , when that happens, wrong assumptions are easily made. It is called guessing. Assumptions might be insight, only if they lead to proven answers. Angle PCQ looks like 45 degrees but it probably is not . Is it angle ACQ that is 45 degrees? Now I am watching the video and reading other comments. (And I came back afterwards, and edited🤭)
@fhffhff
@fhffhff 2 күн бұрын
π-arcsin(5√2/AP) 8/sin/_QPC= 3/4AP/sin(180°-/_QPC-arcsin(5√2/AP)) arctg(5√2/AP/(3/32AP-√(1-50/AP²)))=/_QPC S∆=3AP*5√2/AP=15 √2
@murdock5537
@murdock5537 3 күн бұрын
φ=30° → sin⁡(3φ) = 1; ∆ ABC → ABC = 3φ/2; AB = 10; BC = BQ + CQ = BQ + 8 → CQ = CM + QM → sin⁡(BMA) = 1; AQ = AP + QP = k + 3k; AM = h = 5√2 area ∆ AQC = 4a → 4(5√2) = 4a → 3a = 15√2 = area ∆ CPQ
@nexen1041
@nexen1041 2 күн бұрын
That is absolutely amazing 👍
@santiagoarosam430
@santiagoarosam430 3 күн бұрын
Las proyecciones ortogonales respectivas de A y P sobre QC son D y H---> PH=3*AD/4 ---> AD=AB/√2 =10/√2=5√2---> PH=15√2/4---> Área CPQ =PH*QC/2 =(15√2/4)*8/2 =15√2 u². Gracias y saludos
@oscarcastaneda5310
@oscarcastaneda5310 3 күн бұрын
Red height =(3/4) height from A. and height from A is 10/sqrt(2) = 5sqrt(2) so Red Area is (1/2)(3/4)(5sqrt(2))(8) = 15sqrt(2).
@matematicafacilcomprof.jua9231
@matematicafacilcomprof.jua9231 15 сағат бұрын
I did it the same way. Easier and faster. Greetings from Brazil.
@giuseppemalaguti435
@giuseppemalaguti435 3 күн бұрын
h=(3/4)10sin45=30√2/8=...= 15√2/4...Ablue=(8/2)15√2/4=15√2
@marcelomatos2584
@marcelomatos2584 2 күн бұрын
Height of the ΔABC is 15√︎2, |ΔACQ|=20√︎2, as PQ=3AP ⇒︎ |ΔCPQ|= ¾.|ΔACQ| so ︎|ΔCPQ|= ¾. 20√︎2= 15√︎2. 😉
@sakurayayoi-p2r
@sakurayayoi-p2r 2 күн бұрын
別解法高さが等しい三角形は底辺の比で分割される。したがって8*√2*10/2の1/4が求める面積となる。
@稲次将人
@稲次将人 2 күн бұрын
1/2×8×5√2×3/4=15√2
@roniakter5957
@roniakter5957 2 күн бұрын
Sir,where do you live
@nenetstree914
@nenetstree914 3 күн бұрын
15*(2^0.5)
@JerrySu-k3n
@JerrySu-k3n 2 күн бұрын
this is a pretty ez one
@RealQinnMalloryu4
@RealQinnMalloryu4 3 күн бұрын
(10)^2 (8)^2={100+64}=164 {45°A45°B+90°C}=180°ABC/164=1.16 2^3 (ABC ➖ 3ABC+2).
Russian Math Olympiad Problem | A Very Nice Geometry Challenge
19:38
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Мен атып көрмегенмін ! | Qalam | 5 серия
25:41
Try this prank with your friends 😂 @karina-kola
00:18
Andrey Grechka
Рет қаралды 9 МЛН
Japanese Math Olympiad | A Very Nice Geometry Problem
12:34
Math Booster
Рет қаралды 9 М.
Harvard University Admission Interview Tricks
8:56
Learncommunolizer
Рет қаралды 479 М.
Can YOU Find the Red Triangle’s Area? | Geometry Puzzle
14:06
The Phantom of the Math
Рет қаралды 6 М.
Sweden Math Olympiad | A Very Nice Geometry Problem
10:09
Math Booster
Рет қаралды 1,1 М.
Pre-Algebra Final Exam Review
1:56:08
The Organic Chemistry Tutor
Рет қаралды 196 М.
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН