The Rubik's Cube is a Calculator
13:53
Continued Fraction Arithmetic
23:19
Another Way to Graph Sine
7:04
2 ай бұрын
A Complex Way to Graph
8:57
2 ай бұрын
The Fundamental Theorem of Algebra
17:32
Real Quadratic Integers
20:06
3 ай бұрын
Eisenstein Primes Visually #SoMEpi
21:45
Gaussian Primes Visually
12:29
4 ай бұрын
Building with infinite polygons
14:59
What can be built using polygons?
24:12
Amusing Algebraic Animations
13:42
Visualizing Cyclotomic Polynomials
27:26
Counting in a Complex Base
10:18
Жыл бұрын
Spelling Numbers with Variables
13:05
Using LEGO to write code
5:25
Жыл бұрын
Tetris Blindfolded 49 Line Clears
3:04
How To Solve Megaminx Blindfolded
18:45
Megaminx Blindfolded World Record
6:17
No Peeking #18: Latch Cube
11:46
4 жыл бұрын
No Peeking #17: Ancient Coin Cube
5:16
No Peeking #16: Pentacle Cube
10:09
4 жыл бұрын
Пікірлер
@AlexPearce-mp3td
@AlexPearce-mp3td 7 сағат бұрын
lmao, what if a want to mult by 3 mod 9
@TheGrayCuber
@TheGrayCuber 4 сағат бұрын
ewww it's not a unit! I guess you can multiply by 3 mod 9 if you want, but I don't wanna hear about it
@TheGrayCuber
@TheGrayCuber 4 сағат бұрын
seriously though, that is an interesting topic for ring theory, but this series is about group theory so I'm ignoring zero-divisors
@kangalio
@kangalio Күн бұрын
0:48 are those Stardew Valley sound effects 🤔
@stickman_lore_official6928
@stickman_lore_official6928 Күн бұрын
Julia set
@txikitofandango
@txikitofandango Күн бұрын
Nice
@secondbeamship
@secondbeamship Күн бұрын
What happens if you take the limit at infinity on prime factors? What does mod infinity look like if we can say it means something?
@secondbeamship
@secondbeamship Күн бұрын
Multiplication is indeed repeated addition.
@secondbeamship
@secondbeamship Күн бұрын
Mod 0 and Mod 1?
@flleaf
@flleaf Күн бұрын
not the first time i saw a joke of "this is just abstract group theory. let's apply it!" *applies it to something abstract as well*
@txikitofandango
@txikitofandango Күн бұрын
Make the program write code and become sentient
@txikitofandango
@txikitofandango Күн бұрын
There was a Project Euler problem where I basically had to derive the same steps as in this video, same problem solving approach, and it's neat to see it all in one place, with lots of extra details. Especially if more continued fraction challenges appear.
@txikitofandango
@txikitofandango Күн бұрын
I like the straight lines that are produced by the output vertices of some cyclotomic polynomials
@ataurrehman5689
@ataurrehman5689 Күн бұрын
Converting 2x2 to 5 + 5, adding them and then converting 10 to 4, it's easier than 2x2. You get that? (Definitely for bigger multiplications)
@penguincute3564
@penguincute3564 Күн бұрын
The repeated fractions causes that it might have 2 values.
@txikitofandango
@txikitofandango Күн бұрын
Just found this channel... Finally motivated to give algebra another go
@ИмяФамилия-е7р6и
@ИмяФамилия-е7р6и Күн бұрын
under adderal I didn't understand a damn thing tomorrow I'll watch it again when my head is clear
@samuelwaller4924
@samuelwaller4924 Күн бұрын
I love this channel
@Tysm_for_1k_subs
@Tysm_for_1k_subs 2 күн бұрын
Multipliddition.
@Golden_Tortoise
@Golden_Tortoise 2 күн бұрын
you lost me at 1:42 "and if we apply that map..." what map? where did you get 12 -> 1 where did you get 5 -> 2 I have no idea what you talking about Left that video at that time
@rodrigoqteixeira
@rodrigoqteixeira 2 күн бұрын
7:53 does that mean you can have mod 117 multiplication on a rubik's cube by assigning edges to thr 12 cycle and corners for the 6 cycle?
@TheGrayCuber
@TheGrayCuber 2 күн бұрын
Yes, that is correct!
@rodrigoqteixeira
@rodrigoqteixeira 2 күн бұрын
6:04 love to see you explain the rubik's cube video in correct scientific terms :)
@rodrigoqteixeira
@rodrigoqteixeira 2 күн бұрын
Haha you used the gdc trick that I told you :)
@rodrigoqteixeira
@rodrigoqteixeira 2 күн бұрын
4:05 I give you two options: use a power of 2 as the clock size and the units are all the odd numbers, or use a prime number as clock size and EVERY number < n is a unit.
@-WarMapping-
@-WarMapping- 2 күн бұрын
Can a mod 100 one exist?
@TheGrayCuber
@TheGrayCuber 2 күн бұрын
Yes, clocks for any integer exists! U100 = U4 x U25 = C2 x C20
@Supernexo-g3k
@Supernexo-g3k 2 күн бұрын
1:05 bruh I was actually thinking that
@EdMatthewMorales
@EdMatthewMorales 2 күн бұрын
vvvvvvvvvvu = ?
@EdMatthewMorales
@EdMatthewMorales 2 күн бұрын
10³⁰⁰³
@EdMatthewMorales
@EdMatthewMorales 2 күн бұрын
-ty is ×10, hundred = ×100
@EdMatthewMorales
@EdMatthewMorales 2 күн бұрын
3000ln(10)
@EdMatthewMorales
@EdMatthewMorales 2 күн бұрын
(2×2²)(2+1)(4+1)(6+1)(10+1)(12+1)
@Guys-s5v
@Guys-s5v 2 күн бұрын
Does anyone else notice expanding circles?
@vampire_catgirl
@vampire_catgirl 2 күн бұрын
Oh, you're the rubiks calculator guy. I should subscribble to you
@KLR-3
@KLR-3 2 күн бұрын
I wonder if anyone has adapted this as an alternative to the current popular blindfold method.
@Flaystray
@Flaystray 2 күн бұрын
Not even watching this because there is no reason for a 20 minute video on modular arithmetic
@FiremarkPl
@FiremarkPl 3 күн бұрын
Soo if modular multiplication is modular addition then for cpu is possible to add two numbers (8/16/32bit) in CPU and map the sum. Or am I wrong?
@benjaminbaker3701
@benjaminbaker3701 2 күн бұрын
I'll think more about it later, but my instinct is, if your processor only acted on odd numbers it would work.
@FiremarkPl
@FiremarkPl 3 күн бұрын
"You too is trivial" that was so rude!
@jan-pi-ala-suli
@jan-pi-ala-suli 3 күн бұрын
you lost me
@MrRyanroberson1
@MrRyanroberson1 3 күн бұрын
14:37 if u16 = u2xu4 then u16 = u8, and u32 = u64, and so on. something's wrong here
@drwho7545
@drwho7545 3 күн бұрын
Ok. But this is a forced distribution. Caveat being there always seems to be a pattern that you may visually lock onto. That’s not much different than looking at them on the number line. Although it is a different way of visualization. Maybe you should be looking at a 4 dimensional representation I don’t know.
@Fur0rem
@Fur0rem 3 күн бұрын
Wow that was such a great video, didn't know rubix cubes could go that deep! Now it makes me wonder if this, or a similar concept, could somehow be used by computers, with arithmetic modulo 256, 65536, (all the powers of 2), since right now they still do multiplication the old fashioned way
@blueman-z1m
@blueman-z1m 3 күн бұрын
New sub!
@MrDarkPage
@MrDarkPage 3 күн бұрын
thank you for making these videos. In the youtube sea of AI, sponsored, and low effort atention grab, your videos are a breath of fresh air that really motivate me to think and explore new concepts
@optozorax
@optozorax 3 күн бұрын
Cool video, but it would be really nice to see some applications, like is there a some big prime number, which can represent multiplication of all numbers up to it? I'm very interested in this in terms of speeding up multiplication in processors, can it be used like that?
@nanamacapagal8342
@nanamacapagal8342 3 күн бұрын
Tried proving the whole U39 is isomorphic to U35, and all I did was look for generators I don't have a special keyboard so for the purposes of this comment "=" can mean equality, isomorphism, or congruency (whichever is appropriate in context) U39 = U3 × U13. The generator for U3 is 2 but to make it redundant mod 13 it is instead 14. The generator for U13 is 6 but to make it redundant mod 3 it is instead 19. The C12 with generator 19 can be split into a C4 with generator 34 and a C3 with generator 22, with 19 being written as 22_C3 * 34_C4 ^ 3 mod 39. The same can be done with U35 = U5 × U7. U5 = C4 with generator 3, becomes 8 to keep redundancy mod 7. U7 = C6 with generator 3, becomes 31 to keep redundancy mod 5. The C6 with generator 31 is split into C2 with generator 6 and C3 with generator 16, with 31 = 6_C2 * 16_C3 ^ 2 mod 35. The generators are lined up: U39 C2 = 14 || U35 C2 = 6 U39 C3 = 22 || U35 C3 = 16 U39 C4 = 34 || U35 C4 = 8 And now for the final mapping. Take note that this isn't the only way to do this, you could have picked a different set of generators and still get a valid mapping. CYCLES (C2,C3,C4) || U39 || U35 (0,0,0) || 1 || 1 (0,0,1) || 34 || 8 (0,0,2) || 25 || 29 (0,0,3) || 31 || 22 (0,1,0) || 22 || 16 (0,1,1) || 7 || 23 (0,1,2) || 4 || 9 (0,1,3) || 19 || 2 (0,2,0) || 16 || 11 (0,2,1) || 37 || 18 (0,2,2) || 10 || 4 (0,2,3) || 28 || 32 (1,0,0) || 14 || 6 (1,0,1) || 8 || 13 (1,0,2) || 38 || 34 (1,0,3) || 5 || 27 (1,1,0) || 35 || 26 (1,1,1) || 20 || 33 (1,1,2) || 17 || 19 (1,1,3) || 32 || 12 (1,2,0) || 29 || 31 (1,2,1) || 11 || 3 (1,2,2) || 23 || 24 (1,2,3) || 2 || 17
@trwn87
@trwn87 3 күн бұрын
3:30 The text under “1” is top-notch!
@Guys-s5v
@Guys-s5v 2 күн бұрын
did anyone notice expanding bubbles inside the clock?
@EdMatthewMorales
@EdMatthewMorales 2 күн бұрын
X+1≠prime
@ddeevviiaanntt
@ddeevviiaanntt 3 күн бұрын
Your videos are so confusing lmao
@Isemenuk27
@Isemenuk27 3 күн бұрын
REAL math made by REAL mathematisians
@thephysicistcuber175
@thephysicistcuber175 3 күн бұрын
"Wait, it's all clocks?" " *Always has been.* " .
@tincann7345
@tincann7345 3 күн бұрын
WHY IS NOBODY ELSE CONFUSED T-T
@abbasfadhil1715
@abbasfadhil1715 3 күн бұрын
We just don’t comment. I am more confused about modular arithmetic than I have ever been.
@stefanm578
@stefanm578 Күн бұрын
probably older
@gamingwithspeedy858
@gamingwithspeedy858 3 күн бұрын
You need to fix your thumbnail, its annoying me, you put 7 and 8 in the mod 6 clock
@TheGrayCuber
@TheGrayCuber 3 күн бұрын
Fixed, thanks for catching this!
@TheAgamemnon911
@TheAgamemnon911 3 күн бұрын
Oooh... good timing. This might be relevant to the problem I am working on.