A Nice Exponential Equation
13:33
21 күн бұрын
Пікірлер
@pedrojose392
@pedrojose392 Сағат бұрын
Let x>=y WLOG as we can exchange x and y by symmetry. So: x=1/2+u and y=x1/2-u; u>=0 xy= 1/4-u^2=1 ==>u^2=3/4...u=sqr(3)/2 as we assumed that u>=0 Then (1/2*(1+sqr(3));1/2*(1-sqr(3))) Exchanging...(1/2*(1-sqr(3));1/2*(1+sqr(3)))
@dominiqueubersfeld2282
@dominiqueubersfeld2282 Сағат бұрын
Cambridge or not Cambridge, it's total nonsense! Sorry for the debunking!
@GillesF31
@GillesF31 6 сағат бұрын
Sorry Sir, but the best (and universal) way to solve such a system is (with very FEW steps) ... | x + y = 1 | | xy = 1 recall (very important): • consider S = sum and P = product • then roots of k² - Sk + P = 0 are x and y => we have to solve k² - k + 1 = 0 • x = k₁ = [-(-1) + √((-1)² - 4·1·1)]/(2·1) = (1 + 3i)/2 = 1/2 + (i√3)/2 • y = k₂ = [-(-1) - √((-1)² - 4·1·1)]/(2·1) = (1 - 3i)/2 = 1/2 - (i√3)/2 final result: ■ x = 1/2 + (i√3)/2 and ■ y = 1/2 - (i√3)/2 or (recall: addition and multiplication are commutative) ■ x = 1/2 - (i√3)/2 and ■ y = 1/2 + (i√3)/2 🙂
@kuldipkumar9660
@kuldipkumar9660 7 сағат бұрын
M=4
@WorldwideBibleClass-qr9jk
@WorldwideBibleClass-qr9jk 8 сағат бұрын
❤🎉❤🎉
@Naksh-o2q
@Naksh-o2q 12 сағат бұрын
(x•x•x)/{2•2•2}=(2•2•2)/{x•x•x} By cross multiplication.... x⁶=2⁶ Since powers are same ,therefore, x=2.....
@小瑋-p7y
@小瑋-p7y 13 сағат бұрын
m=4😊
@juancarlossanchezveana1812
@juancarlossanchezveana1812 14 сағат бұрын
Excellent 👏🏻👏🏻
@JoseLopes-h4f
@JoseLopes-h4f 17 сағат бұрын
√m+√-m=36 √m+i√m=36 (√m+i√m)^2=36^2 m+2i√m*√m+i^2*√m^2=36^2 m+2im-m=36^2 2im=36^2 36^2 m= _______ 2i 36^2 i m= ______ * _____ 2i i 36^2*i -1296i m= ______ = ___________ 2(-1) 2 m= - 648i
@__Mike137
@__Mike137 20 сағат бұрын
2^a=x; 3^b=y -->x^2+y^2=7; x^3+y^3=10 ---> (x+y)(x^2-xy+y^2)=10 ---> (x+y)(7-xy)=10=1*10 or 2*5 Then x+y=1, 7-xy=10, or all different combinations leading to real solutions
@СветлинПетров-ь2в
@СветлинПетров-ь2в 22 сағат бұрын
Easy. x=2
@BlessingNnamani-q3u
@BlessingNnamani-q3u Күн бұрын
2and7
@boguslawszostak1784
@boguslawszostak1784 Күн бұрын
My favorite "first choice substitution" for similar equations cam be used here. u=x+y:, v=x-y {x^2 + y^2 = 7, (x^3 + y^3) = 10} {(u+v)^2+(u-v)^2=7, (u+v)^3+(u-v)^3=10} {2 u^2 + 2 v^2 = 7, 2 u^3 + 6 u v^2 = 10} We calculate 2v^2 from the first equation and substitute it into the second equation { 2 v^2 = 7 -2 u^2, 2 u^3 + 3 u (7 -2 u^2) = 10} -4 u^3 + 21 u - 10 = 0
@alexchan4226
@alexchan4226 Күн бұрын
沒有解。
@danielfranca1939
@danielfranca1939 Күн бұрын
Tetration equation? Seeing and hearing of this the first time. Thanks for sharing this video, sir. Much respect.
@danielfranca1939
@danielfranca1939 Күн бұрын
Lovely math problem form Onlinemaths Tv...😅😂❤
@danielfranca1939
@danielfranca1939 Күн бұрын
Nice work piece. Thanks for the video, sir
@HiltonFernandes
@HiltonFernandes Күн бұрын
Great explanation. Thanks.
@aaronwalcott513
@aaronwalcott513 Күн бұрын
x^6 = 2^6 suggests right away that you use logarithms. 6.logx = 6.log2 ÷ 6 so that logx = log2, therefore x = 2... Which you can see just by observation.
@lastik229
@lastik229 Күн бұрын
Can somebody explain the part when he added 2n? How can he even do something like that? And can we make some simpler steps like: 1^x =5 xln1 = ln5 x=ln5/ln1=log1(5) and the answer is compex infinity
@thegoldenratioandbeyond232
@thegoldenratioandbeyond232 21 сағат бұрын
He raised both sides to the 2n, where n is any integer (for the final solution, it is any non-zero integer). Basically it uses the fact that e^(2*i*pi*n)=1.
@techynew6032
@techynew6032 Күн бұрын
✅ 🤚 ☑ 👍 ✔ 👏
@BlurRoux
@BlurRoux Күн бұрын
Thank you for the video
@WorldwideBibleClass-qr9jk
@WorldwideBibleClass-qr9jk Күн бұрын
Nice maths
@WorldwideBibleClass-qr9jk
@WorldwideBibleClass-qr9jk Күн бұрын
Nice question, I love this problem and the solution applied. Thanks man.
@WorldwideBibleClass-qr9jk
@WorldwideBibleClass-qr9jk Күн бұрын
Thanks! Much ❤❤❤
@nubestouo
@nubestouo Күн бұрын
x= 2exp(i*pi/3),2exp(2i*pi/3),2exp(-i*pi/3),2exp(-2i*pi/3),2,-2
@GillesF31
@GillesF31 Күн бұрын
Why so many steps ? The 6 roots of this equation can be solved with few (detailed) steps: (x·x·x)/(2·2·2) = (2·2·2)/(x·x·x) x⁶ = 2⁶ x⁶ - 2⁶ = 0 (x³)² - (2³)² = 0 (x³ - 2³)·(x³ + 2³) = 0 (x - 2)·(x² + 2x + 4)·(x + 2)·(x² - 2x + 4) = 0 x - 2 = 0 => x = +2 x + 2 = 0 => x = -2 x² + 2x + 4 => x₁ et x₂ = (-2 ± 2i√3)/2 = -1 ± i√3 x² - 2x + 4 => x₁ et x₂ = (+2 ± 2i√3)/2 = +1 ± i√3 --- /// final result: 6 solutions (roots): ■ x = +2 ■ x = -2 ■ x = -1 + i√3 ■ x = -1 - i√3 ■ x = +1 + i√3 ■ x = +1 - i√3 :-)
@muhammadindrafatihfailasuf
@muhammadindrafatihfailasuf Күн бұрын
N equal 2,571, n = 2,571 has degreed from xy3 those 2,571 x 2,571 x 2,571 equal final quiteful goals to target seventeen. Hai japam former BPUPKI of indonesian republic, my king on jogja the majesty HB X was have met caesar naruhito. Naruhito still love indonesia. My big salutation of affect from naruhito.. he knows earn from BPUPKI is peeneeteea 9 . And laksamana maeda give circle table in his home to teenagers force affordable of soekarno to proclamation Indonesian Republic. Thanks japan. My eyes always was blues fall of japan kindness.
@o-1111
@o-1111 Күн бұрын
I like this video because I realised that to find x, we should use all remaining english alphabets from a to z and finally say x is equal to all other alphabet of English. If it is not enough, we can also use greek latin and Portuguese alphabet. This is algebra 😂😂
@hosamu7077
@hosamu7077 2 күн бұрын
解が実数でなさそうであることはすぐにわかりましたが......
@ninecho
@ninecho 2 күн бұрын
wait, is that i = √(-1); or i² = -1; ?
@ethanranasinghe7685
@ethanranasinghe7685 2 күн бұрын
x=2
@grahamgleed9040
@grahamgleed9040 2 күн бұрын
2/2=2/2 So X=2.
@brianwade4179
@brianwade4179 2 күн бұрын
Degree 6 so we can expect six solutions. Let DOS = "difference of squares". By DOS, (x^3-2^3)(x^3+2^3)=0. For x^3-2^3, clearly x=2 is a root, so x-2 is a factor. By PD, the remaining polynomial is x^2+2x+4. By CTS, x^2+2x+1 = -4+1 => (x+1)^2=-3 => x = -1+-sqrt(3)i. For x^3+2^3, clearly -2 is a root, so x+2 is a factor. By PD, the remaining polynomial is x^2-2x+4. By CTS, x^2-2x+1 = -4+1 => (x-1)^2=-3 => x = 1+-sqrt(3)i.
@freedom-exe
@freedom-exe 2 күн бұрын
I knew that it will have 2 and -2 as hi solution but didn't expect that Imaginary Solutions will also arrive.
@electrongamerz01
@electrongamerz01 Күн бұрын
This equation has a degree 6, which means the highest power on a variable is 6, therefore it should have 6 solutions
@saitamagrandmother1305
@saitamagrandmother1305 2 күн бұрын
Thats so easy
@bikru217
@bikru217 2 күн бұрын
idiot olympiad fr
@MadaraUchiha-wj8sl
@MadaraUchiha-wj8sl 2 күн бұрын
Great energy, great explanation
@Kaniel-e4c5
@Kaniel-e4c5 2 күн бұрын
Great video
@RyanLewis-Johnson-wq6xs
@RyanLewis-Johnson-wq6xs 2 күн бұрын
(X*X*X)/(2*2*2)=(2*2*2)/(X*X*X) X= ±2 X= ±1±Sqrt[3]i It’s in my head.
@amirmassoudsadjadi4788
@amirmassoudsadjadi4788 2 күн бұрын
That is not x^3, but another mistake made it correct 😅
@WorldwideBibleClass-qr9jk
@WorldwideBibleClass-qr9jk Күн бұрын
😂😂😂😂
@wes9627
@wes9627 2 күн бұрын
Learn to work with quantities in the complex plane and easily and rapidly obtain complex solutions. Any complex number z=a+b*i may be written as z=|z|e^{iθ} where |z|=√(a^2+b^2) and θ=tan^{-1}(b/a), where θ must be adjusted to fall into the correct quadrant. If x^n=a+b*i=|z|e^{iθ}, it may also be expressed as x^n=|z|e^{iθ+i2jπ}, where j is any integer. Taking the nth root of this expression gives x_j=|z|^{1/n}*e^{iθ/n+i2jπ/n}=|z|^{1/n}[cos(θ/n+2jπ/n)+i*sin(θ/n+2jπ/n)],j=0,1,...,n-1. These n roots lie equally spaced on a radius |z|^{1/n} circle centered on the origin of the complex plane.
@preciousLizzie-t3x
@preciousLizzie-t3x 2 күн бұрын
Can you make me understand please
@onlineMathsTV
@onlineMathsTV 2 күн бұрын
Yes. Just watch it the second time and drop your question, sir/ma'am. We will reply to your question swiftly. Thanks.
@preciousLizzie-t3x
@preciousLizzie-t3x 2 күн бұрын
Alright sir
@cephasknight
@cephasknight 2 күн бұрын
Hyperbole..too much redundancy
@preciousLizzie-t3x
@preciousLizzie-t3x 2 күн бұрын
But I don't understand this math
@onlineMathsTV
@onlineMathsTV 2 күн бұрын
Just watch it for the second time for a better understanding, sir/ma'am.
@vanshmauryamgrollno-5111
@vanshmauryamgrollno-5111 2 күн бұрын
@onlinemathtv he probably meant he is in a smaller level of class to understand this maths I am also small to understand this but tried to and now understand how it all works
@joaomacedo7856
@joaomacedo7856 3 күн бұрын
it is possible to generalize? 1^x = y x = ln(y)/2npii
@jdjsksjsjsihshshshshhs5317
@jdjsksjsjsihshshshshhs5317 3 күн бұрын
1
@apotheosys1
@apotheosys1 3 күн бұрын
This happens whenever you use a branch of the logarithm such that ln(1) isn't zero, but some pure imaginary non zero. Of course, this equation is impossible over reals and any brach that "agrees" with the reals such that ln(1) =0.
@greyshadow5575
@greyshadow5575 3 күн бұрын
Amazing video 👏
@benjaminkarazi968
@benjaminkarazi968 3 күн бұрын
Hello, How so!?
@PauloRicardo-fc4li
@PauloRicardo-fc4li 3 күн бұрын
Amazing! Transcendental and complex numbers together make math magic.
@benjaminkarazi968
@benjaminkarazi968 3 күн бұрын
Hello, How is it superb?
@Uminformal
@Uminformal Күн бұрын
@benjaminkarazi968 Why has a lot of Arabic videos on your playlist? You said you are a scientist, tell me what field you work in, I only see Arab women on your channel
@Einstein1879y
@Einstein1879y Күн бұрын
​@@benjaminkarazi968 verdade, muitas mulheres árabes no seu canal
@IsmaelCastro-o9m
@IsmaelCastro-o9m 3 күн бұрын
Amazing!
@benjaminkarazi968
@benjaminkarazi968 3 күн бұрын
Hello, How is it superb?
@benjaminkarazi968
@benjaminkarazi968 3 күн бұрын
How is it superb?
@WorldwideBibleClass-qr9jk
@WorldwideBibleClass-qr9jk Күн бұрын
​@@benjaminkarazi968hater