Let x>=y WLOG as we can exchange x and y by symmetry. So: x=1/2+u and y=x1/2-u; u>=0 xy= 1/4-u^2=1 ==>u^2=3/4...u=sqr(3)/2 as we assumed that u>=0 Then (1/2*(1+sqr(3));1/2*(1-sqr(3))) Exchanging...(1/2*(1-sqr(3));1/2*(1+sqr(3)))
@dominiqueubersfeld2282Сағат бұрын
Cambridge or not Cambridge, it's total nonsense! Sorry for the debunking!
@GillesF316 сағат бұрын
Sorry Sir, but the best (and universal) way to solve such a system is (with very FEW steps) ... | x + y = 1 | | xy = 1 recall (very important): • consider S = sum and P = product • then roots of k² - Sk + P = 0 are x and y => we have to solve k² - k + 1 = 0 • x = k₁ = [-(-1) + √((-1)² - 4·1·1)]/(2·1) = (1 + 3i)/2 = 1/2 + (i√3)/2 • y = k₂ = [-(-1) - √((-1)² - 4·1·1)]/(2·1) = (1 - 3i)/2 = 1/2 - (i√3)/2 final result: ■ x = 1/2 + (i√3)/2 and ■ y = 1/2 - (i√3)/2 or (recall: addition and multiplication are commutative) ■ x = 1/2 - (i√3)/2 and ■ y = 1/2 + (i√3)/2 🙂
@kuldipkumar96607 сағат бұрын
M=4
@WorldwideBibleClass-qr9jk8 сағат бұрын
❤🎉❤🎉
@Naksh-o2q12 сағат бұрын
(x•x•x)/{2•2•2}=(2•2•2)/{x•x•x} By cross multiplication.... x⁶=2⁶ Since powers are same ,therefore, x=2.....
2^a=x; 3^b=y -->x^2+y^2=7; x^3+y^3=10 ---> (x+y)(x^2-xy+y^2)=10 ---> (x+y)(7-xy)=10=1*10 or 2*5 Then x+y=1, 7-xy=10, or all different combinations leading to real solutions
@СветлинПетров-ь2в22 сағат бұрын
Easy. x=2
@BlessingNnamani-q3uКүн бұрын
2and7
@boguslawszostak1784Күн бұрын
My favorite "first choice substitution" for similar equations cam be used here. u=x+y:, v=x-y {x^2 + y^2 = 7, (x^3 + y^3) = 10} {(u+v)^2+(u-v)^2=7, (u+v)^3+(u-v)^3=10} {2 u^2 + 2 v^2 = 7, 2 u^3 + 6 u v^2 = 10} We calculate 2v^2 from the first equation and substitute it into the second equation { 2 v^2 = 7 -2 u^2, 2 u^3 + 3 u (7 -2 u^2) = 10} -4 u^3 + 21 u - 10 = 0
@alexchan4226Күн бұрын
沒有解。
@danielfranca1939Күн бұрын
Tetration equation? Seeing and hearing of this the first time. Thanks for sharing this video, sir. Much respect.
@danielfranca1939Күн бұрын
Lovely math problem form Onlinemaths Tv...😅😂❤
@danielfranca1939Күн бұрын
Nice work piece. Thanks for the video, sir
@HiltonFernandesКүн бұрын
Great explanation. Thanks.
@aaronwalcott513Күн бұрын
x^6 = 2^6 suggests right away that you use logarithms. 6.logx = 6.log2 ÷ 6 so that logx = log2, therefore x = 2... Which you can see just by observation.
@lastik229Күн бұрын
Can somebody explain the part when he added 2n? How can he even do something like that? And can we make some simpler steps like: 1^x =5 xln1 = ln5 x=ln5/ln1=log1(5) and the answer is compex infinity
@thegoldenratioandbeyond23221 сағат бұрын
He raised both sides to the 2n, where n is any integer (for the final solution, it is any non-zero integer). Basically it uses the fact that e^(2*i*pi*n)=1.
@techynew6032Күн бұрын
✅ 🤚 ☑ 👍 ✔ 👏
@BlurRouxКүн бұрын
Thank you for the video
@WorldwideBibleClass-qr9jkКүн бұрын
Nice maths
@WorldwideBibleClass-qr9jkКүн бұрын
Nice question, I love this problem and the solution applied. Thanks man.
Why so many steps ? The 6 roots of this equation can be solved with few (detailed) steps: (x·x·x)/(2·2·2) = (2·2·2)/(x·x·x) x⁶ = 2⁶ x⁶ - 2⁶ = 0 (x³)² - (2³)² = 0 (x³ - 2³)·(x³ + 2³) = 0 (x - 2)·(x² + 2x + 4)·(x + 2)·(x² - 2x + 4) = 0 x - 2 = 0 => x = +2 x + 2 = 0 => x = -2 x² + 2x + 4 => x₁ et x₂ = (-2 ± 2i√3)/2 = -1 ± i√3 x² - 2x + 4 => x₁ et x₂ = (+2 ± 2i√3)/2 = +1 ± i√3 --- /// final result: 6 solutions (roots): ■ x = +2 ■ x = -2 ■ x = -1 + i√3 ■ x = -1 - i√3 ■ x = +1 + i√3 ■ x = +1 - i√3 :-)
@muhammadindrafatihfailasufКүн бұрын
N equal 2,571, n = 2,571 has degreed from xy3 those 2,571 x 2,571 x 2,571 equal final quiteful goals to target seventeen. Hai japam former BPUPKI of indonesian republic, my king on jogja the majesty HB X was have met caesar naruhito. Naruhito still love indonesia. My big salutation of affect from naruhito.. he knows earn from BPUPKI is peeneeteea 9 . And laksamana maeda give circle table in his home to teenagers force affordable of soekarno to proclamation Indonesian Republic. Thanks japan. My eyes always was blues fall of japan kindness.
@o-1111Күн бұрын
I like this video because I realised that to find x, we should use all remaining english alphabets from a to z and finally say x is equal to all other alphabet of English. If it is not enough, we can also use greek latin and Portuguese alphabet. This is algebra 😂😂
@hosamu70772 күн бұрын
解が実数でなさそうであることはすぐにわかりましたが......
@ninecho2 күн бұрын
wait, is that i = √(-1); or i² = -1; ?
@ethanranasinghe76852 күн бұрын
x=2
@grahamgleed90402 күн бұрын
2/2=2/2 So X=2.
@brianwade41792 күн бұрын
Degree 6 so we can expect six solutions. Let DOS = "difference of squares". By DOS, (x^3-2^3)(x^3+2^3)=0. For x^3-2^3, clearly x=2 is a root, so x-2 is a factor. By PD, the remaining polynomial is x^2+2x+4. By CTS, x^2+2x+1 = -4+1 => (x+1)^2=-3 => x = -1+-sqrt(3)i. For x^3+2^3, clearly -2 is a root, so x+2 is a factor. By PD, the remaining polynomial is x^2-2x+4. By CTS, x^2-2x+1 = -4+1 => (x-1)^2=-3 => x = 1+-sqrt(3)i.
@freedom-exe2 күн бұрын
I knew that it will have 2 and -2 as hi solution but didn't expect that Imaginary Solutions will also arrive.
@electrongamerz01Күн бұрын
This equation has a degree 6, which means the highest power on a variable is 6, therefore it should have 6 solutions
@saitamagrandmother13052 күн бұрын
Thats so easy
@bikru2172 күн бұрын
idiot olympiad fr
@MadaraUchiha-wj8sl2 күн бұрын
Great energy, great explanation
@Kaniel-e4c52 күн бұрын
Great video
@RyanLewis-Johnson-wq6xs2 күн бұрын
(X*X*X)/(2*2*2)=(2*2*2)/(X*X*X) X= ±2 X= ±1±Sqrt[3]i It’s in my head.
@amirmassoudsadjadi47882 күн бұрын
That is not x^3, but another mistake made it correct 😅
@WorldwideBibleClass-qr9jkКүн бұрын
😂😂😂😂
@wes96272 күн бұрын
Learn to work with quantities in the complex plane and easily and rapidly obtain complex solutions. Any complex number z=a+b*i may be written as z=|z|e^{iθ} where |z|=√(a^2+b^2) and θ=tan^{-1}(b/a), where θ must be adjusted to fall into the correct quadrant. If x^n=a+b*i=|z|e^{iθ}, it may also be expressed as x^n=|z|e^{iθ+i2jπ}, where j is any integer. Taking the nth root of this expression gives x_j=|z|^{1/n}*e^{iθ/n+i2jπ/n}=|z|^{1/n}[cos(θ/n+2jπ/n)+i*sin(θ/n+2jπ/n)],j=0,1,...,n-1. These n roots lie equally spaced on a radius |z|^{1/n} circle centered on the origin of the complex plane.
@preciousLizzie-t3x2 күн бұрын
Can you make me understand please
@onlineMathsTV2 күн бұрын
Yes. Just watch it the second time and drop your question, sir/ma'am. We will reply to your question swiftly. Thanks.
@preciousLizzie-t3x2 күн бұрын
Alright sir
@cephasknight2 күн бұрын
Hyperbole..too much redundancy
@preciousLizzie-t3x2 күн бұрын
But I don't understand this math
@onlineMathsTV2 күн бұрын
Just watch it for the second time for a better understanding, sir/ma'am.
@vanshmauryamgrollno-51112 күн бұрын
@onlinemathtv he probably meant he is in a smaller level of class to understand this maths I am also small to understand this but tried to and now understand how it all works
@joaomacedo78563 күн бұрын
it is possible to generalize? 1^x = y x = ln(y)/2npii
@jdjsksjsjsihshshshshhs53173 күн бұрын
1
@apotheosys13 күн бұрын
This happens whenever you use a branch of the logarithm such that ln(1) isn't zero, but some pure imaginary non zero. Of course, this equation is impossible over reals and any brach that "agrees" with the reals such that ln(1) =0.
@greyshadow55753 күн бұрын
Amazing video 👏
@benjaminkarazi9683 күн бұрын
Hello, How so!?
@PauloRicardo-fc4li3 күн бұрын
Amazing! Transcendental and complex numbers together make math magic.
@benjaminkarazi9683 күн бұрын
Hello, How is it superb?
@UminformalКүн бұрын
@benjaminkarazi968 Why has a lot of Arabic videos on your playlist? You said you are a scientist, tell me what field you work in, I only see Arab women on your channel
@Einstein1879yКүн бұрын
@@benjaminkarazi968 verdade, muitas mulheres árabes no seu canal