x^2 - x^3 = 12 -x^3 + x^2 - 12 = 0 x^3 - x^2 + 0x + 12 = 0 x = -2 is a solution, so let's factor out x + 2 (x + 2) * (x^2 - 3x + 6) = 0 x^2 - 3x + 6 = 0 Move over and complete the square x^2 - 3x + (9/4) = -6 + (9/4) = (9 - 24) / 4 = -(15/4) (x - (3/2))^2 = - 15 / 4 x - (3/2) = [+/-](i/2)*sqrt(15) x = (3/2) + (i/2)*sqrt(15) ; (3/2) - (i/2)*sqrt(15) x = -2 ; (3/2) + (i/2)*sqrt(15) ; (3/2) - (i/2)*sqrt(15)
@alucardthespy55399 сағат бұрын
(x - 3)^4 = 16 a = x - 3 a^4 = 16 a^2 = 4 ; -4 a = 2 ; -2 ; 2i ; -2i a + 3 = x x = 5 ; 1 ; 3 + 2i ; 3 - 2i
@yalcinhamdioglu591611 сағат бұрын
x=-1 or -5
@andretewem338513 сағат бұрын
Why do not use the polar form ? 1. z = x + 3 2. set z = (|z|,arg(z)) ==> z^6 = (|z|^6, 6.arg(z)) 3. 2^6 = (2^6, 0 + 2k.pi) Then (x + 3)^6 = 2^6 <==> |z|^6 = 2^6 and 6.arg(z) = 2k.pi <==> |z| = 2 and arg(z) = k.pi /3 with k € [0 ; 1 ; ... ; 5]. The solutions in "x" are - 2, 2, 1 +/- i.sqrt(3), -1 +/- i.sqrt(3). The solutions in "z" are -5, -1, -2 +/ i.sqrt(3), -4 +/- i.sqrt(3)
@Sekhar-wf9hz16 сағат бұрын
(a^3-b^3)= (a-b) ( a^2 + ab + b^2)
@artursierant889917 сағат бұрын
divide both sides by 2^6, you get 6 roots of 1
@感謝-q6f23 сағат бұрын
-5?
@heribertoayalareyes3628Күн бұрын
@nelly. Ecuac grado 6 tiene 6 raíces!!
@Limited_LightКүн бұрын
8:05 0 = x^2 + 8x + 19 = x^2 + 2 * 4 * x + 19 = x^2 + 2 * 4 * x + 16 + 3 = x^2 + 2 * 4 * x + 4^2 + 3 = (x + 4)^2 + 3 ===> (x + 4)^2 = -3 ===> x + 4 = [plus or minus] sqrt(-3) ===> x = -4 [plus or minus] i * sqrt(3).
@nellyjohnson7316Күн бұрын
X = -1. That was easy.
@nom7846Күн бұрын
Kkkk
@Limited_LightКүн бұрын
*All*.
@heribertoayalareyes3628Күн бұрын
@nelly. No olvides que una Ecuación de grado seis tiene 6 raíces. -2
My question. Would it be possible to write it as: x = (log 3 + log 3 + log 2 + log 2)/ 3log3 and get the same answer?
@dmitriystankiewich516Күн бұрын
Естественно! = ⅔(1+ log2/log3) Последний же шаг (переход к логарифму по нестандартному основанию) - вреден, ибо калькулятор/компьютер не умеют его вычислять, все равно надо расписывать через lg или ln. 😂
I got a slightly different answer, so, since it checks in the equation, may be equivalent. Factor 3 from each side and divide by 3 3^x=12 X log3=log (3*4) X=(log3+log4)/log3 X=1+(2(log2))/log3 X=1+(2(log2)){base3} Check: 3^(1+2log2){base3} (3^1)2^2=12 12*3=36
@Rev03FFLКүн бұрын
No, not correct in the first step, since 3^x*3^x*3^x does not equal 3*3^x. The check worked because you substituted the solution into 3^x=12, which isn't the original equation.
Có nhiều cách giải bài toán này, cảm ơn bạn chia sẻ kinh nghiệm cho các bạn trẻ, tôi đã 60 tuổi nhưng vẫn nhớ kiến thức này từ Việt Nam 🤝
@SpencersAcademy2 күн бұрын
I am grateful, sir. 🙏
@alucardthespy55393 күн бұрын
x * (x + 2) * (x + 4) * (x + 6) = 9 (x^2 + 2x) * (x^2 + 10x + 24) = 9 x^4 + 10x^3 + 24x^2 + 2x^3 + 20x^2 +48x = 9 x^4 + 12x^3 + 44x^2 + 48x - 9 = 0 Now, let's factor. x^4 is multiplies by 1, and the polynomial ends in negative 9. So, let's try x = + 3 and x = -3 x = +3 3 * 5 * 7 * 9 = 9 FAIL x = -3 -3 * -1 * 1 * 3 = 9 PASS x = -3 ... (x + 3) Now, divide the polynomial by (x + 3) (x + 3) * (x^3 + 9x^2 + 17x - 3) = 0 Now, try to factor... We still have a -3, so this new polynomial might still be divisible by (x + 3), let's give it a go... And it does factor... (x + 3)^2 * (x^2 + 6x - 1) That last polynomial doesn't look like it factors cleanly, but no matter... Now set both equal to zero and let's find our x. (x + 3) = 0 x = -3 x^2 + 6x - 1 = 0 Move over and complete the square... x^2 + 6x + 9 = 1 + 9 (x + 3)^2 = 10 x + 3 = [+/-]sqrt(10) x = -3 + [+/-]sqrt(10) x= -3 ; -3 + sqrt(10) ; -3 - sqrt(10)
@SpencersAcademy2 күн бұрын
What a wonderful approach! 👏
@raghvendrasingh12893 күн бұрын
❤ Let y = x/(x-1) then x+ y = xy equation is x^2+y^2 = 8 or (x+y)^2 - 2xy = 8 (xy)^2 - 2xy - 8 = 0 xy = 4 , -2 putting in x+y = xy Case 1 x+ 4/x = 4 x^2 - 4x +4 = 0 x = 2 Case 2 x - 2/x = -2 x^2+2x = 2 (x+1)^2 = 3 x = -1+√3 , x = - 1-√3 indirectly we have to find point of intersection of circle and rectangular hyperbola.👍
when we check the solutions, we have sqrt(521i)+sqrt(-512i)=32i or -32i √x+√(-x)=√512i+√(-512i) =√512∙√i+√512∙√(-i) =√512∙(√i+√(-i)) i=0+i∙1=cos(π/2)+i∙sin(π/2)=e^(π/2 i)=e^(2nπ+π/2)i,n∈Z √i=(i)^(1/2)=e^(nπ+π/4)i=cos(nπ+π/4)+i∙sin(nπ+π/4) √(-i)=(i)^(3/2)=e^(3nπ+3π/4)i=cos(3nπ+3π/4)+i∙sin(3nπ+3π/4) take n=0 √i=cos(π/4)+i∙sin(π/4)=1/√2+1/√2 i √(-i)=cos(3π/4)+i∙sin(3π/4)=-1/√2+1/√2 i √i+√(-i)=1/√2+1/√2 i+(-1/√2+1/√2 i)=2/√2 i=√2 i √x+√(-x)=√512∙√2 i=32i take n=1 √x+√(-x)=√512∙(-√2 i)=-32i Why?? Do have any wrong??
@EC4U2C_Studioz4 күн бұрын
Should have gone straight to using the log of base 2/5 to minimize the number of steps in solving the exponential equation. Applying the appropriate log base to the exponential equation allows using whatever is in the exponent on one side of the equation to be the only thing on that side of the equation.
I have read most of the comments and concluded that that the method used in this problem is very good.
@SpencersAcademy2 күн бұрын
Thank you sir 😊
@nellyjohnson73165 күн бұрын
Can’t the answer be simplified?
@1234larry14 күн бұрын
Only that log(2/5) can be written in the denominator as log2-log5, but that’s as much as it can be simplified. The expression in the numerator is inside the log function in its simplest form so it can’t be changed.
@АндрейПергаев-з4н5 күн бұрын
61=(-1)*(-61) Где этот вариант?
@SpencersAcademy2 күн бұрын
It's homework, sir. Check the pinned comment.
@yaser7225 күн бұрын
What if x=1 and y=-1 in equality (x-y) < x^2+xy+y^2 ?? Or x=y=0? x=2 ,y=-2?
@kareolaussen8195 күн бұрын
Check 61+y^3 for y=1, 2, 3, 4, bingo! 5^3-4^3 = 61, hence (x,y)=(5,4) or (-4,-5). This is not an IMO-class problem.
@tinashechipomho6 күн бұрын
Step one and step two can be done in one go you don't have to do every tiny operation
@jamesharmon49944 күн бұрын
Sadly, most videos do this to excruciating detail.
@nasrullahhusnan22896 күн бұрын
(7^x)+[7^(2x)]+7^(3x)=14 (7^x)+(7^x)²+(7^x)³=2+4+8 =2+2²+2³ As the structure of bot side is similar 7^x=2 --> x=⁷log(2) where the logarithm is 7-based. For other possibile roots, knowing that [(7^x)-2] is a factor, we can factor the equation as (7^x)³+(7^x)²+(7^x)-14=0 [(7^x)-2][(7^x)²+3(7^x)+7]=0 (7x^x)²+3(7^x)+7=0 is a quadratic equation which is positive definite. The roots are imaginary: 7^x=½[-3±isqrt(19)] Have to take logarithm to find x, which can't be done.
@nguyenthang9466 күн бұрын
How do we know a quartic equation without a cubic can be factorised as (x²+x+p)(x²-x+q) and does it still hold true even when there is a cubic? Also is there any reasoning why the coefficient of x equals 1 anyway? 😄
@SpencersAcademy6 күн бұрын
Notice that in the video, I only considered the positive factors of 61. You can try the negative factors of 61 and show us what you've got. ❤
@EchoEra_creation6 күн бұрын
First❤❤❤❤
@andretewem33856 күн бұрын
Easier with the polar writing. Set i = (1,pi/2 + 2k.pi) with k = 0 or 1. Then for k = 0 ==> sqrt(i) = (1,pi/4) = (sqrt(2)/2).(1 + i) for k = 1 ==> sqrt(i) = (1,pi/4 + pi) = (-sqrt(2)/2).(1 + i)
Hoc est x= log 2/ log7, Eheu! Responsi. 😂😅😊😢🎉😂😅😊😮😢
@kareolaussen8197 күн бұрын
At about 4:30 the lecturer is cheating: The tentative factorization over the integers must take the form (x^2+rx+p)(x^2-rx+q) There is no stated prior reason why r should equal 1 (except by already knowing the result)! With r unknown a completely different solution strategy must be adopted, based on all possible factorizations of the constant term.
@kareolaussen8197 күн бұрын
Introduce y=√(x+5), and rewrite equation as x^2 - y = 5 y^2 - x = 5 Subtract to find x^2 -y^2+x-y=(x-y)(x+y+1)=0. Case y=x => (after squaring) (x-1/2)^2 = 5+1/4 = 21/4 x=(1+√21)/2 is a valid solution, x=(1-√21)/2 is not a valid expression for y as a square root. Case y=-(x+1) => (after squaring) (x+1/2)^2 = 5-1+1/4 = 17/4 x=-(1+√17)/2 is a valid solution. x=(-1+√17)/2 does not lead to a valid expression for y as a square root.
@syther8363 күн бұрын
i have got a pretty more intuitive method. x² - 5 = √(x-5) square both sides x⁴ + 5² - 10x² = x - 5 5² - 10x² + x⁴ + 5 - x = 0 5² - 5(2x² + 1) + x⁴ - x = 0 extend the use of quadratic formula to find the value of 5 and treat it as a variable. with a=1, b = -(2x²+1) and c = x⁴-x 5 = [(2x²+1) ± √{(2x²+1)² - 4(x⁴-x)}]/2 5 = [2x²+1 ± √{4x⁴+1+4x² - 4x⁴ - 4x}]/2 5 = [2x²+1 ± √(4x²+1-4x)]/2 5 = [2x²+1 ± √(2x-1)²]/2 5 = [2x²+1 ± (2x-1)]/2 so, 5 = x²+x and 5 = x²-x+1 solving both eqs we get, x =[-1±√20]/2 and also, x = [1±√-15]/2 we get 2 real solutions and 2 complex. many more solutions also do exist and you can graph it on desmos to find the other ones
@wes96277 күн бұрын
Let a=±bi where b is real. Then √2√b/2=16. Thus, √b=16√2, b=2*16^2=512, and a=±512i