Пікірлер
@SidneiMV
@SidneiMV 6 сағат бұрын
x4ˣ = 1 xln4eˣˡⁿ⁴ = ln4 = 2ln2 xln4eˣˡⁿ⁴ = (ln2)(eˡⁿ²) xln4 = ln2 2xln2 = ln2 *x = 1/2*
@alucardthespy5539
@alucardthespy5539 9 сағат бұрын
x^2 - x^3 = 12 -x^3 + x^2 - 12 = 0 x^3 - x^2 + 0x + 12 = 0 x = -2 is a solution, so let's factor out x + 2 (x + 2) * (x^2 - 3x + 6) = 0 x^2 - 3x + 6 = 0 Move over and complete the square x^2 - 3x + (9/4) = -6 + (9/4) = (9 - 24) / 4 = -(15/4) (x - (3/2))^2 = - 15 / 4 x - (3/2) = [+/-](i/2)*sqrt(15) x = (3/2) + (i/2)*sqrt(15) ; (3/2) - (i/2)*sqrt(15) x = -2 ; (3/2) + (i/2)*sqrt(15) ; (3/2) - (i/2)*sqrt(15)
@alucardthespy5539
@alucardthespy5539 9 сағат бұрын
(x - 3)^4 = 16 a = x - 3 a^4 = 16 a^2 = 4 ; -4 a = 2 ; -2 ; 2i ; -2i a + 3 = x x = 5 ; 1 ; 3 + 2i ; 3 - 2i
@yalcinhamdioglu5916
@yalcinhamdioglu5916 11 сағат бұрын
x=-1 or -5
@andretewem3385
@andretewem3385 13 сағат бұрын
Why do not use the polar form ? 1. z = x + 3 2. set z = (|z|,arg(z)) ==> z^6 = (|z|^6, 6.arg(z)) 3. 2^6 = (2^6, 0 + 2k.pi) Then (x + 3)^6 = 2^6 <==> |z|^6 = 2^6 and 6.arg(z) = 2k.pi <==> |z| = 2 and arg(z) = k.pi /3 with k € [0 ; 1 ; ... ; 5]. The solutions in "x" are - 2, 2, 1 +/- i.sqrt(3), -1 +/- i.sqrt(3). The solutions in "z" are -5, -1, -2 +/ i.sqrt(3), -4 +/- i.sqrt(3)
@Sekhar-wf9hz
@Sekhar-wf9hz 16 сағат бұрын
(a^3-b^3)= (a-b) ( a^2 + ab + b^2)
@artursierant8899
@artursierant8899 17 сағат бұрын
divide both sides by 2^6, you get 6 roots of 1
@感謝-q6f
@感謝-q6f 23 сағат бұрын
-5?
@heribertoayalareyes3628
@heribertoayalareyes3628 Күн бұрын
@nelly. Ecuac grado 6 tiene 6 raíces!!
@Limited_Light
@Limited_Light Күн бұрын
8:05 0 = x^2 + 8x + 19 = x^2 + 2 * 4 * x + 19 = x^2 + 2 * 4 * x + 16 + 3 = x^2 + 2 * 4 * x + 4^2 + 3 = (x + 4)^2 + 3 ===> (x + 4)^2 = -3 ===> x + 4 = [plus or minus] sqrt(-3) ===> x = -4 [plus or minus] i * sqrt(3).
@nellyjohnson7316
@nellyjohnson7316 Күн бұрын
X = -1. That was easy.
@nom7846
@nom7846 Күн бұрын
Kkkk
@Limited_Light
@Limited_Light Күн бұрын
*All*.
@heribertoayalareyes3628
@heribertoayalareyes3628 Күн бұрын
@nelly. No olvides que una Ecuación de grado seis tiene 6 raíces. -2
@vitorluis2010
@vitorluis2010 Күн бұрын
(x + 3) ^ 999 = 2 ^ 999 999 raízes Simplificação: (x + 3) ^ 6 = 2 ^ 6 (x + 3) ^ (6 * (1/6)) = 2 ^ (6 * (1/6)) (x + 3) ^ 1 = 2 ^ 1 x - 3 = 2 x = 2 - 3 x = -1
@xinmiaofan4340
@xinmiaofan4340 23 сағат бұрын
-1,-5
@АндрейПергаев-з4н
@АндрейПергаев-з4н Күн бұрын
А сразу логарифмировать по базе 3?
@davidseed2939
@davidseed2939 Күн бұрын
yes 3^3x =36= (2^2).(3^2) take log base 3 3x= 2log_3(2) +2 x= (2/3)(1+log_3(2))
@Sekhar-wf9hz
@Sekhar-wf9hz Күн бұрын
3xlog3= 2(log2+log3) 3x= 2(log2+log3)/log3 3x= 2[(log2/log3)+(log3/log3)] x= 2/3[(log3 2) +(1)]//
@Budgeman83030
@Budgeman83030 Күн бұрын
My question. Would it be possible to write it as: x = (log 3 + log 3 + log 2 + log 2)/ 3log3 and get the same answer?
@dmitriystankiewich516
@dmitriystankiewich516 Күн бұрын
Естественно! = ⅔(1+ log2/log3) Последний же шаг (переход к логарифму по нестандартному основанию) - вреден, ибо калькулятор/компьютер не умеют его вычислять, все равно надо расписывать через lg или ln. 😂
@alucardthespy5539
@alucardthespy5539 Күн бұрын
3^x * 3^x * 3^x = 36 3^3x = 36 27^x = 36 x * ln(27) = ln(36) x = ln(36) / ln(27) [You can stop here] ln(36) = 2 * ln(6) = 2 * (ln(2) + ln(3)) ln(27) = 3 * ln(3) ln(36) / ln(27) = (2/3) * (1 + (ln(2) / ln(3))) x = (2/3) * (1 + (ln(2) / ln(3)))
@alankim7944
@alankim7944 Күн бұрын
wow so funnyㅋㅋㅋ
@1234larry1
@1234larry1 Күн бұрын
I got a slightly different answer, so, since it checks in the equation, may be equivalent. Factor 3 from each side and divide by 3 3^x=12 X log3=log (3*4) X=(log3+log4)/log3 X=1+(2(log2))/log3 X=1+(2(log2)){base3} Check: 3^(1+2log2){base3} (3^1)2^2=12 12*3=36
@Rev03FFL
@Rev03FFL Күн бұрын
No, not correct in the first step, since 3^x*3^x*3^x does not equal 3*3^x. The check worked because you substituted the solution into 3^x=12, which isn't the original equation.
@田中勉-c7c
@田中勉-c7c 2 күн бұрын
√-11i は間違い。 正しくは √11 i
@walterwen2975
@walterwen2975 3 күн бұрын
A Very Nice Math Olympiad Problem: [(x + 2)(x + 3)(x + 4)(x + 5)]/[(x - 2)(x - 3)(x - 4)(x - 5)] = 1; x =? [(x + 2)(x + 5)][(x + 3)(x + 4)] = (x² + 7x + 10)(x² + 7x + 12) = (x² + 10 + 7x)(x² + 12 + 7x) = (x² + 10)(x² + 12) + 14x(x² + 11) + (7x)² [(x - 2)(x - 5)][(x - 3)(x - 4)] = (x² - 7x + 10)(x² - 7x + 12) = (x² + 10 - 7x)(x² + 12 - 7x) = (x² + 10)(x² + 12) - 14x(x² + 11) + (7x)² (x + 2)(x + 3)(x + 4)(x + 5) = (x - 2)(x - 3)(x - 4)(x - 5) (x² + 10)(x² + 12) + 14x(x² + 11) + (7x)² = (x² + 10)(x² + 12) - 14x(x² + 11) + (7x)² 28x(x² + 11) = 0, x(x² + 11) = 0; x = 0 or x² + 11 = 0, x² = - 11; x = ± i√11 Answer check: [(x + 2)(x + 3)(x + 4)(x + 5)]/[(x - 2)(x - 3)(x - 4)(x - 5)] = [(x² + 7x + 10)(x² + 7x + 12)]/[(x² + 7x + 10)(x² + 7x + 12)] = 1 x = 0: [(2)(3)(4)(5)]/[(- 2)(- 3)(- 4)(- 5)] = 1; Confirmed x = ± i√11: x² = - 11 x² + 7x + 10 = - 11 ± 7i√11 + 10 = - 1 ± 7i√11, x² + 7x + 12 = 1 ± 7i√11 (x² + 7x + 10)(x² + 7x + 12) = (- 1 ± 7i√11)(1 ± 7i√11) = - 1 - 539 = - 540 x² - 7x + 10 = - 1 -/+ 7i√11, x² - 7x + 12 = 1 -/+ 7i√11 (x² - 7x + 10)(x² - 7x + 12) = (- 1 -/+ 7i√11)(1 -/+ 7i√11) = - 1 - 539 = - 540 [(x² + 7x + 10)(x² + 7x + 12)]/[(x² + 7x + 10)(x² + 7x + 12)] = 1; Confirmed Final answer: x = 0; x = i√11 or x = - i√11
@SpencersAcademy
@SpencersAcademy 2 күн бұрын
Amazing! 👏
@neeldesilva8088
@neeldesilva8088 3 күн бұрын
as per the question...it is very visible...base ...k-1=2...so k=3❤
@key_board_x
@key_board_x 3 күн бұрын
[(x + 2).(x + 3).(x + 4).(x + 5)] / [(x - 2).(x - 3).(x - 4).(x - 5)] = 1 (x + 2).(x + 3).(x + 4).(x + 5) = (x - 2).(x - 3).(x - 4).(x - 5) (x² + 3x + 2x + 6).(x² + 5x + 4x + 20) = (x² - 3x - 2x + 6).(x² - 5x - 4x + 20) (x² + 5x + 6).(x² + 9x + 20) = (x² - 5x + 6).(x² - 9x + 20) x⁴ + 9x³ + 20x² + 5x³ + 45x² + 100x + 6x² + 54x + 120 = x⁴ - 9x³ + 20x² - 5x³ + 45x² - 100x + 6x² - 54x + 120 28x³ + 308x = 0 28x.(x² + 11) = 0 x.(x² + 11) = 0 First case: x = 0 Second case: x² + 11 = 0 x² = - 11 x² = 11i² x = ± i√11
@thummalurusrinivasareddy1078
@thummalurusrinivasareddy1078 3 күн бұрын
Substitute x=2 by trial and error method( a+b)^2+(a-b)^2 =2a^2+2b^2 which is equal to 2×4^2+2(√15)^2= 32+30=62
@bandarusatyanandachary1181
@bandarusatyanandachary1181 3 күн бұрын
The equation satisfy at x = 0
@VaidehiVats14
@VaidehiVats14 2 күн бұрын
It will satisfy at literally any no except +-2,3,4,5 😭😭
@bandarusatyanandachary1181
@bandarusatyanandachary1181 3 күн бұрын
Using assumption method x = 2 (4 + √15)^x + (4 -√15)^x =( 4+ √15)^2 + (4 - √15)^2 {4^2 + 2.4.√15 + (√15)^2} + {4^2 - 2.4.√15 + (√15)^2} =(4^2 + 2.4.√15 +(√15)^2) +(4^2 - 2.4.√15 + (√15)^2) =4^2 + 8√15 + 15 +4^2 - 8√15 + 15 2.16 + 15 + 15 (canceling+8√15 and -8√15) = 32 + 30 =62 =R H S Hence assumption is correct Therefore x = 2
@tranty65
@tranty65 3 күн бұрын
Có nhiều cách giải bài toán này, cảm ơn bạn chia sẻ kinh nghiệm cho các bạn trẻ, tôi đã 60 tuổi nhưng vẫn nhớ kiến thức này từ Việt Nam 🤝
@SpencersAcademy
@SpencersAcademy 2 күн бұрын
I am grateful, sir. 🙏
@alucardthespy5539
@alucardthespy5539 3 күн бұрын
x * (x + 2) * (x + 4) * (x + 6) = 9 (x^2 + 2x) * (x^2 + 10x + 24) = 9 x^4 + 10x^3 + 24x^2 + 2x^3 + 20x^2 +48x = 9 x^4 + 12x^3 + 44x^2 + 48x - 9 = 0 Now, let's factor. x^4 is multiplies by 1, and the polynomial ends in negative 9. So, let's try x = + 3 and x = -3 x = +3 3 * 5 * 7 * 9 = 9 FAIL x = -3 -3 * -1 * 1 * 3 = 9 PASS x = -3 ... (x + 3) Now, divide the polynomial by (x + 3) (x + 3) * (x^3 + 9x^2 + 17x - 3) = 0 Now, try to factor... We still have a -3, so this new polynomial might still be divisible by (x + 3), let's give it a go... And it does factor... (x + 3)^2 * (x^2 + 6x - 1) That last polynomial doesn't look like it factors cleanly, but no matter... Now set both equal to zero and let's find our x. (x + 3) = 0 x = -3 x^2 + 6x - 1 = 0 Move over and complete the square... x^2 + 6x + 9 = 1 + 9 (x + 3)^2 = 10 x + 3 = [+/-]sqrt(10) x = -3 + [+/-]sqrt(10) x= -3 ; -3 + sqrt(10) ; -3 - sqrt(10)
@SpencersAcademy
@SpencersAcademy 2 күн бұрын
What a wonderful approach! 👏
@raghvendrasingh1289
@raghvendrasingh1289 3 күн бұрын
❤ Let y = x/(x-1) then x+ y = xy equation is x^2+y^2 = 8 or (x+y)^2 - 2xy = 8 (xy)^2 - 2xy - 8 = 0 xy = 4 , -2 putting in x+y = xy Case 1 x+ 4/x = 4 x^2 - 4x +4 = 0 x = 2 Case 2 x - 2/x = -2 x^2+2x = 2 (x+1)^2 = 3 x = -1+√3 , x = - 1-√3 indirectly we have to find point of intersection of circle and rectangular hyperbola.👍
@SpencersAcademy
@SpencersAcademy 2 күн бұрын
Amazing approach! 👏
@dudasslobodan8901
@dudasslobodan8901 4 күн бұрын
X=+-√11i X=+-✓11√(-1) ,√(-1)=i X=+-√11i NO. +-√-11i
@逸園-無毒果園
@逸園-無毒果園 4 күн бұрын
when we check the solutions, we have sqrt(521i)+sqrt(-512i)=32i or -32i √x+√(-x)=√512i+√(-512i) =√512∙√i+√512∙√(-i) =√512∙(√i+√(-i)) i=0+i∙1=cos(π/2)+i∙sin(π/2)=e^(π/2 i)=e^(2nπ+π/2)i,n∈Z √i=(i)^(1/2)=e^(nπ+π/4)i=cos(nπ+π/4)+i∙sin(nπ+π/4) √(-i)=(i)^(3/2)=e^(3nπ+3π/4)i=cos(3nπ+3π/4)+i∙sin(3nπ+3π/4) take n=0 √i=cos(π/4)+i∙sin(π/4)=1/√2+1/√2 i √(-i)=cos(3π/4)+i∙sin(3π/4)=-1/√2+1/√2 i √i+√(-i)=1/√2+1/√2 i+(-1/√2+1/√2 i)=2/√2 i=√2 i √x+√(-x)=√512∙√2 i=32i take n=1 √x+√(-x)=√512∙(-√2 i)=-32i Why?? Do have any wrong??
@EC4U2C_Studioz
@EC4U2C_Studioz 4 күн бұрын
Should have gone straight to using the log of base 2/5 to minimize the number of steps in solving the exponential equation. Applying the appropriate log base to the exponential equation allows using whatever is in the exponent on one side of the equation to be the only thing on that side of the equation.
@SpencersAcademy
@SpencersAcademy 2 күн бұрын
You are absolutely right 💯
@RealQinnMalloryu4
@RealQinnMalloryu4 4 күн бұрын
(4x+4x ➖}+{25x+25x ➖}={8x^2+50x2}=58x^4 8^50x^4 8^25^25^x^2 8^5^5^5^5^5^5^5^5^5^5x^4 2^3^2^3^2^3^2^3^2^3^2^3^2^3^2^3^2^3^2^3^2^3x^2^2 1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^1^3x^1^2 1^3x^1^2 3x^2(x ➖ 3x+2). 10^{x+x ➖ }+{1+1 ➖ }=10^{x^2+2}=2)10^2x^2 20x^2 10^10x^2 5^5^5^5x^2 2^3^2^3^2^3^2^3x^2 1^1^1^1^1^1^1^3x^2 3x^2 (x ➖ 3x+2).
@RealQinnMalloryu4
@RealQinnMalloryu4 4 күн бұрын
(16)+(16) (2^3)+(2^3) (2^1)+(2^1) (1)+(2) (a ➖ 2a+1)
@RealQinnMalloryu4
@RealQinnMalloryu4 4 күн бұрын
{61+61}=121 10^10^21 1^10^3^7 2^5^2^53^7^1 1^1^2^1^31^1 2^3:(y ➖ 3x+2).
@jasbirsinghvirk6910
@jasbirsinghvirk6910 5 күн бұрын
I have read most of the comments and concluded that that the method used in this problem is very good.
@SpencersAcademy
@SpencersAcademy 2 күн бұрын
Thank you sir 😊
@nellyjohnson7316
@nellyjohnson7316 5 күн бұрын
Can’t the answer be simplified?
@1234larry1
@1234larry1 4 күн бұрын
Only that log(2/5) can be written in the denominator as log2-log5, but that’s as much as it can be simplified. The expression in the numerator is inside the log function in its simplest form so it can’t be changed.
@АндрейПергаев-з4н
@АндрейПергаев-з4н 5 күн бұрын
61=(-1)*(-61) Где этот вариант?
@SpencersAcademy
@SpencersAcademy 2 күн бұрын
It's homework, sir. Check the pinned comment.
@yaser722
@yaser722 5 күн бұрын
What if x=1 and y=-1 in equality (x-y) < x^2+xy+y^2 ?? Or x=y=0? x=2 ,y=-2?
@kareolaussen819
@kareolaussen819 5 күн бұрын
Check 61+y^3 for y=1, 2, 3, 4, bingo! 5^3-4^3 = 61, hence (x,y)=(5,4) or (-4,-5). This is not an IMO-class problem.
@tinashechipomho
@tinashechipomho 6 күн бұрын
Step one and step two can be done in one go you don't have to do every tiny operation
@jamesharmon4994
@jamesharmon4994 4 күн бұрын
Sadly, most videos do this to excruciating detail.
@nasrullahhusnan2289
@nasrullahhusnan2289 6 күн бұрын
(7^x)+[7^(2x)]+7^(3x)=14 (7^x)+(7^x)²+(7^x)³=2+4+8 =2+2²+2³ As the structure of bot side is similar 7^x=2 --> x=⁷log(2) where the logarithm is 7-based. For other possibile roots, knowing that [(7^x)-2] is a factor, we can factor the equation as (7^x)³+(7^x)²+(7^x)-14=0 [(7^x)-2][(7^x)²+3(7^x)+7]=0 (7x^x)²+3(7^x)+7=0 is a quadratic equation which is positive definite. The roots are imaginary: 7^x=½[-3±isqrt(19)] Have to take logarithm to find x, which can't be done.
@nguyenthang946
@nguyenthang946 6 күн бұрын
How do we know a quartic equation without a cubic can be factorised as (x²+x+p)(x²-x+q) and does it still hold true even when there is a cubic? Also is there any reasoning why the coefficient of x equals 1 anyway? 😄
@SpencersAcademy
@SpencersAcademy 6 күн бұрын
Notice that in the video, I only considered the positive factors of 61. You can try the negative factors of 61 and show us what you've got. ❤
@EchoEra_creation
@EchoEra_creation 6 күн бұрын
First❤❤❤❤
@andretewem3385
@andretewem3385 6 күн бұрын
Easier with the polar writing. Set i = (1,pi/2 + 2k.pi) with k = 0 or 1. Then for k = 0 ==> sqrt(i) = (1,pi/4) = (sqrt(2)/2).(1 + i) for k = 1 ==> sqrt(i) = (1,pi/4 + pi) = (-sqrt(2)/2).(1 + i)
@ShriH-d1o
@ShriH-d1o 6 күн бұрын
(√a+√-a)^2=32^2;=>a+2(√a√-a)-a= 1024;=>2(√a√-a)= 1024;=> √(-a^2)= 512;=> a=±512i
@syedmdabid7191
@syedmdabid7191 6 күн бұрын
Hoc est x= log 2/ log7, Eheu! Responsi. 😂😅😊😢🎉😂😅😊😮😢
@kareolaussen819
@kareolaussen819 7 күн бұрын
At about 4:30 the lecturer is cheating: The tentative factorization over the integers must take the form (x^2+rx+p)(x^2-rx+q) There is no stated prior reason why r should equal 1 (except by already knowing the result)! With r unknown a completely different solution strategy must be adopted, based on all possible factorizations of the constant term.
@kareolaussen819
@kareolaussen819 7 күн бұрын
Introduce y=√(x+5), and rewrite equation as x^2 - y = 5 y^2 - x = 5 Subtract to find x^2 -y^2+x-y=(x-y)(x+y+1)=0. Case y=x => (after squaring) (x-1/2)^2 = 5+1/4 = 21/4 x=(1+√21)/2 is a valid solution, x=(1-√21)/2 is not a valid expression for y as a square root. Case y=-(x+1) => (after squaring) (x+1/2)^2 = 5-1+1/4 = 17/4 x=-(1+√17)/2 is a valid solution. x=(-1+√17)/2 does not lead to a valid expression for y as a square root.
@syther836
@syther836 3 күн бұрын
i have got a pretty more intuitive method. x² - 5 = √(x-5) square both sides x⁴ + 5² - 10x² = x - 5 5² - 10x² + x⁴ + 5 - x = 0 5² - 5(2x² + 1) + x⁴ - x = 0 extend the use of quadratic formula to find the value of 5 and treat it as a variable. with a=1, b = -(2x²+1) and c = x⁴-x 5 = [(2x²+1) ± √{(2x²+1)² - 4(x⁴-x)}]/2 5 = [2x²+1 ± √{4x⁴+1+4x² - 4x⁴ - 4x}]/2 5 = [2x²+1 ± √(4x²+1-4x)]/2 5 = [2x²+1 ± √(2x-1)²]/2 5 = [2x²+1 ± (2x-1)]/2 so, 5 = x²+x and 5 = x²-x+1 solving both eqs we get, x =[-1±√20]/2 and also, x = [1±√-15]/2 we get 2 real solutions and 2 complex. many more solutions also do exist and you can graph it on desmos to find the other ones
@wes9627
@wes9627 7 күн бұрын
Let a=±bi where b is real. Then √2√b/2=16. Thus, √b=16√2, b=2*16^2=512, and a=±512i
@ジャスミン-v1s
@ジャスミン-v1s 7 күн бұрын
为什么能展开成这两个二次方程的乘积 我随便写了个方程,就无法这样做 x^4 -22x^2+3x+8=0